首页> 外文期刊>Mechanics of materials >Molecular dynamics studies on energy dissipation and void collapse in graded nanoporous nickel under shock compression
【24h】

Molecular dynamics studies on energy dissipation and void collapse in graded nanoporous nickel under shock compression

机译:冲击压缩下梯度纳米多孔镍能量耗散和空洞塌陷的分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

We present systematic investigations on energy dissipation and void collapse in graded nanoporous nickel by non-equilibrium molecular dynamics simulations. It is found that void size gradient influences the time history path of the energy dissipation. Under strong shock loading conditions, when the voids are completely collapsed, the total energy dissipation is dependent only on the porosity, and is independent of the void size gradient in the shock direction. The total energy dissipation increases with the increase of porosity. However, when the porosity increases to a critical value of 6%, the total energy dissipation reaches an upper limit. Increasing the porosity beyond this critical value would not result in further increase in energy dissipation. The simulations show that voids collapse is attributed to the combined effect of transverse and longitudinal plasticity flow of void wall. Two mechanisms of voids collapse are revealed: the plasticity mechanism and internal jetting mechanism. Under relatively weaker shocks, the plasticity mechanism, which leads to transverse collapse of voids, prevails; while at the stronger shock strengths, the internal jetting mechanism, which leads to longitudinal flow, plays a more significant role. The earliest appearing dislocations in a void may either nucleate at the front half surface or on the back half surface, depending on the position of the void in the sample and the void size gradient. Moreover, the simulations provide quantitative descriptions about the effects of loading intensity on energy dissipation rate and void collapse rate. We show that the energy dissipation rate can be well represented by a quadratic polynomial function of the shock loading velocity, and the void collapse rate is a linear function of the shock loading
机译:我们目前通过非平衡分子动力学模拟对梯度纳米多孔镍中的能量耗散和空隙塌陷进行系统研究。发现空隙尺寸梯度影响能量耗散的时间历史路径。在强烈的冲击载荷条件下,当空隙完全塌陷时,总的能量耗散仅取决于孔隙率,并且与冲击方向上的空隙尺寸梯度无关。总的能量消耗随着孔隙率的增加而增加。但是,当孔隙率增加到6%的临界值时,总能量耗散达到上限。将孔隙率增加到超过该临界值将不会导致能量耗散的进一步增加。仿真表明,空洞的塌陷是由于空洞壁的横向和纵向塑性流动的共同作用所致。揭示了空隙塌陷的两种机理:可塑性机理和内部喷射机理。在相对较弱的冲击下,会导致空隙横向塌陷的可塑性机制占上风;而在较强的冲击强度下,导致纵向流动的内部喷射机制起着更重要的作用。空隙中最早出现的位错可能在前半表面或后半表面成核,具体取决于样品中空隙的位置和空隙尺寸梯度。此外,仿真提供了关于载荷强度对能量耗散率和空隙塌陷率的影响的定量描述。我们表明,能量耗散率可以由冲击载荷速度的二次多项式函数很好地表示,而空陷率是冲击载荷的线性函数。

著录项

  • 来源
    《Mechanics of materials》 |2018年第11期|13-25|共13页
  • 作者单位

    Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China;

    Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China;

    Beijing Inst Technol, Sch Mechatron Engn, Beijing, Peoples R China;

    Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China;

    Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China;

    Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nickel; Nanoporous materials; Shock compression; Voids collapse; Energy dissipation;

    机译:镍;纳米孔材料;冲击压缩;空隙塌陷;耗能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号