首页> 外文期刊>Mechanical systems and signal processing >New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
【24h】

New clustering algorithm-based fault diagnosis using compensation distance evaluation technique

机译:基于补偿距离评估技术的基于聚类算法的故障诊断新方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a fault diagnosis method of rotating machinery based on a new clustering algorithm using a compensation distance evaluation technique (CDET). A two-stage feature selection and weighting technique is adopted in this algorithm. Feature weights are computed via CDET according to the sensitivity of features and assigned to the corresponding features to indicate their different importance in clustering. Feature weighting highlights the importance of sensitive features and simultaneously weakens the interference of insensitive features. The new clustering algorithm is described and applied to incipient fault and compound fault diagnosis of locomotive roller bearings. The diagnosis result shows the algorithm is able to reliably recognise not only different fault categories and severities but also the compound faults, and demonstrates the superior effectiveness and practicability of the algorithm. Therefore, it is a promising approach to fault diagnosis of rotating machinery.
机译:本文提出了一种基于新的聚类算法的旋转机械故障诊断方法,该算法采用补偿距离评估技术(CDET)。该算法采用了两阶段特征选择和加权技术。特征权重通过CDET根据特征的敏感性进行计算,并分配给相应的特征以指示其在聚类中的不同重要性。特征权重突出了敏感特征的重要性,同时减弱了不敏感特征的干扰。描述了新的聚类算法,并将其应用于机车滚子轴承的早期故障和复合故障诊断。诊断结果表明,该算法不仅能够可靠地识别出不同的故障类别和严重程度,而且能够可靠地识别出复合故障,证明了该算法的优越性和实用性。因此,这是旋转机械故障诊断的一种有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号