首页> 外文期刊>Mechanical systems and signal processing >Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: A new optimization approach
【24h】

Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: A new optimization approach

机译:振动系统中的稳健和最小范数局部二次特征值分配:一种新的优化方法

获取原文
获取原文并翻译 | 示例

摘要

The partial quadratic eigenvalue assignment problem (PQEVAP) concerns reassigning a few undesired eigenvalues of a quadratic matrix pencil to suitably chosen locations and keeping the other large number of eigenvalues and eigenvectors unchanged (no spillover). The problem naturally arises in controlling dangerous vibrations in structures by means of active feedback control design. For practical viability, the design must be robust, which requires that the norms of the feedback matrices and the condition number of the closed-loop eigenvectors are as small as possible. The problem of computing feedback matrices that satisfy the above two practical requirements is known as the Robust Partial Quadratic Eigenvalue Assignment Problem (RPQEVAP). In this paper, we formulate the RPQEVAP as an unconstrained minimization problem with the cost function involving the condition number of the closed-loop eigenvector matrix and two feedback norms. Since only a small number of eigenvalues of the open-loop quadratic pencil are computable using the state-of-the-art matrix computational techniques and/or measurable in a vibration laboratory, it is imperative that the problem is solved using these small number of eigenvalues and the corresponding eigenvectors. To this end, a class of the feedback matrices are obtained in parametric form, parameterized by a single parametric matrix, and the cost function and the required gradient formulas for the optimization problem are developed in terms of the small number of eigenvalues that are reassigned and their corresponding eigenvectors. The problem is solved directly in quadratic setting without transforming it to a standard first-order control problem and most importantly, the significant "no spill-over property" of the closed-loop eigenvalues and eigenvectors is established by means of a mathematical result. These features make the proposed method practically applicable even for very large structures. Results on numerical experiments show that the proposed method considerably reduces both feedback norms and the sensitivity of the closed-loop eigenvalues. A study on robustness of the system responses of the method under small perturbations show that the responses of the perturbed closed-loop system are compatible with perturbations.
机译:部分二次特征值分配问题(PQEVAP)涉及将二次矩阵笔的一些不希望有的特征值重新分配到适当选择的位置,并使其他大量特征值和特征向量保持不变(无溢出)。通过主动反馈控制设计来控制结构中的危险振动自然会产生问题。为了实现实用性,设计必须具有鲁棒性,这要求反馈矩阵的范数和闭环特征向量的条件数尽可能小。计算满足上述两个实际要求的反馈矩阵的问题称为“鲁棒部分二次特征值分配问题”(RPQEVAP)。在本文中,我们将RPQEVAP公式化为一个无约束的最小化问题,其代价函数涉及闭环特征向量矩阵的条件数和两个反馈范数。由于开环二次铅笔的特征值只有很少一部分可以使用最新的矩阵计算技术进行计算和/或在振动实验室中进行测量,因此必须使用这些少量的特征值来解决问题特征值和相应的特征向量。为此,以参数形式获得一类反馈矩阵,并通过单个参数矩阵对其进行参数化,并根据少量特征值重新分配和分配来开发成本函数和优化问题所需的梯度公式。它们对应的特征向量。该问题可以在二次设置中直接解决,而无需将其转换为标准的一阶控制问题,最重要的是,通过数学结果可以建立闭环特征值和特征向量的显着“无溢出特性”。这些特征使得所提出的方法甚至可用于非常大的结构。数值实验结果表明,该方法大大降低了反馈范数和闭环特征值的灵敏度。对小扰动下该方法的系统响应的鲁棒性研究表明,该扰动闭环系统的响应与扰动是兼容的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号