首页> 外文期刊>Mechanical systems and signal processing >A comparative study of sensor fault diagnosis methods based on observer for ECAS system
【24h】

A comparative study of sensor fault diagnosis methods based on observer for ECAS system

机译:基于观测器的ECAS系统传感器故障诊断方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.
机译:电控空气悬架(ECAS)系统的性能和实用性高度依赖于各种传感器提供的状态信息,但是传感器故障经常发生。基于非线性3自由度1/4车辆模型,使用不同的故障检测和隔离(FDI)方法来诊断ECAS系统的传感器故障。考虑的方法包括具有简洁算法的扩展卡尔曼滤波器(EKF),具有鲁棒跟踪能力的强跟踪滤波器(STF)和具有数值精度的库曼卡尔曼滤波器(CKF)。我们提出了EKF,STF和CKF三种滤波器,以设计典型传感器故障和噪声下的ECAS系统状态观察器。结果表明,尽管存在环境噪声,三种方法仍能分别成功地检测和隔离故障,不同算法的FDI时延和故障敏感性不同,同时,与EKF和STF相比,CKF方法对传感器故障的FDI性能最佳。 ECAS系统。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2017年第ptab期|169-183|共15页
  • 作者单位

    Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China,School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China;

    School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China;

    School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China;

    Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China,School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China;

    School of Mechanical Engineering, Hunan institute of Technology, Hengyang 412002, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electronically controlled air suspension (ECAS); Sensor faults; Fault detection and isolation (FDI); Algorithms comparison;

    机译:电子控制空气悬架(ECAS);传感器故障;故障检测与隔离(FDI);算法比较;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号