首页> 外文期刊>Mechanical systems and signal processing >A SVM framework for fault detection of the braking system in a high speed train
【24h】

A SVM framework for fault detection of the braking system in a high speed train

机译:用于高速列车制动系统故障检测的SVM框架

获取原文
获取原文并翻译 | 示例

摘要

In April 2015, the number of operating High Speed Trains (HSTs) in the world has reached 3603. An efficient, effective and very reliable braking system is evidently very critical for trains running at a speed around 300 km/h. Failure of a highly reliable braking system is a rare event and, consequently, informative recorded data on fault conditions are scarce. This renders the fault detection problem a classification problem with highly unbalanced data. In this paper, a Support Vector Machine (SVM) framework, including feature selection, feature vector selection, model construction and decision boundary optimization, is proposed for tackling this problem. Feature vector selection can largely reduce the data size and, thus, the computational burden. The constructed model is a modified version of the least square SVM, in which a higher cost is assigned to the error of classification of faulty conditions than the error of classification of normal conditions. The proposed framework is successfully validated on a number of public unbalanced datasets. Then, it is applied for the fault detection of braking systems in HSTi in comparison with several SVM approaches for unbalanced datasets, the proposed framework gives better results.
机译:2015年4月,全球运行的高速列车(HST)数量达到3603辆。高效,有效且非常可靠的制动系统显然对于以300 km / h的速度行驶的列车至关重要。高度可靠的制动系统发生故障的情况很少见,因此,缺乏有关故障情况的信息丰富的记录数据。这使故障检测问题成为具有高度不平衡数据的分类问题。为了解决这个问题,本文提出了一种支持向量机(SVM)框架,包括特征选择,特征向量选择,模型构建和决策边界优化。特征向量的选择可以大大减少数据大小,从而减少计算负担。所构建的模型是最小二乘SVM的修改版本,其中对故障条件分类错误的分配成本比对正常条件分类错误的分配更高。所提出的框架已在许多公共不平衡数据集上得到成功验证。然后,与几种不平衡数据集的支持向量机方法相比,将其应用于HSTi制动系统的故障检测,提出的框架给出了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号