首页> 外文期刊>Mechanical systems and signal processing >Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation
【24h】

Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation

机译:基于批贝叶斯估计的非线性有限元模型更新损伤识别土木结构

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic structural FE models of a bridge pier and a moment resisting steel frame, are performed to validate the performance and accuracy of the presented nonlinear FE model updating approach and demonstrate its application to SHM. These validation studies show the excellent performance of the proposed framework for SHM and damage identification even in the presence of high measurement noise and/or way-out initial estimates of the model parameters. Furthermore, the detrimental effects of the input measurement noise on the performance of the proposed framework are illustrated and quantified through one of the validation studies.
机译:本文提出了一种结构健康监测(SHM)和民用建筑损伤识别的框架。该框架将先进的基于力学的非线性有限元(FE)建模和分析技术与批处理贝叶斯估计方法集成在一起,以估计在感兴趣结构的FE模型中使用的时不变模型参数。该框架使用结构的输入激励和动态响应,并更新结构的非线性有限元模型,以最大程度地减少预测的响应时间和测量的响应时间之间的差异。然后可以询问更新的有限元模型,以检测,定位,分类和量化损坏状态,并预测结构的剩余使用寿命。与递归估计方法相反,在批处理贝叶斯估计方法中,将结构的输入激励和输出响应的整个时间历史用作一批数据,以通过多次迭代来估计有限元模型参数。在非信息先验的情况下,批处理贝叶斯方法导致扩展的最大似然(ML)估计方法,以共同估计时不变模型参数和测量噪声幅度。使用基于梯度的内点优化算法可有效解决扩展的ML估计问题。基于梯度的优化算法需要相对于要识别的模型参数的FE响应敏感度。使用直接差分法(DDM)可以准确有效地计算FE响应灵敏度。通过使用关于模型参数的FE响应灵敏度计算精确的Fisher信息矩阵,基于Cramer-Rao下界(CRLB)定理评估估计不确定性。使用基于无味变换的采样方法验证了所提出的不确定性量化方法的准确性。基于桥墩和抗弯钢框架的实际结构有限元模型进行了两项验证研究,以验证所提出的非线性有限元模型更新方法的性能和准确性,并证明其在SHM中的应用。这些验证研究表明,即使在存在高测量噪声和/或模型参数初始估计的情况下,提出的SHM和损伤识别框架的出色性能也是如此。此外,通过验证研究之一说明并量化了输入测量噪声对所提出框架性能的有害影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号