首页> 外文期刊>Mechanical systems and signal processing >Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures
【24h】

Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

机译:贝叶斯非线性结构有限元模型及地震输入识别法在土木结构破坏评估中的应用

获取原文
获取原文并翻译 | 示例

摘要

A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.
机译:提出了一种方法来更新受未知输入激励作用的土木结构的基于力学的非线性有限元(FE)模型。该方法允许使用地震事件期间记录的空间稀疏的输出响应测量值,联合估算结构的非线性有限元模型的未知时不变模型参数和输入激励的未知时程。估计工具采用了无味卡尔曼滤波器,该滤波器通过使用确定性采样方法来绕过针对未知模型参数和未知输入激励的有限元响应灵敏度计算。研究了从异构传感器阵列(包括加速度计,位移传感器和应变仪)获得的测量数据的使用。基于估计的有限元模型参数和输入激励,可以查询更新后的非线性有限元模型,以检测,定位,分类和评估结构中的损伤。具有未知双向水平地震激励的六个未知模型参数的三维4层2乘1海湾钢框架结构和三维5层2乘1海湾的数值模拟响应数据钢筋混凝土框架结构具有9个未知模型参数,它们在未知水平双向地震激励作用下被用来说明和验证所提出的方法。验证研究的结果表明,所提出的算法可联合估算未知有限元模型参数和未知输入激励而具有出色的性能和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号