首页> 外文期刊>Mechanical systems and signal processing >Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part III: Application to statistical modal analysis
【24h】

Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part III: Application to statistical modal analysis

机译:标量传递函数的圆对称复正态比分布。第三部分:在统计模态分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.
机译:这项研究将圆对称复数正态比分布的理论发现Yan和Ren(2016)[1,2]从统计学的角度应用于基于透射率的模态分析。在模态域中建立了谐振频率附近的传递函数的概率模型,同时提供了一些有见地的评论。从理论上讲,谐振频率附近的传递函数的统计仅取决于“噪声与信号”之比和模式形状。作为模态域中传递函数概率模型发展的后遗症,本研究通过借鉴一种新颖的范式在贝叶斯框架下提出了模态识别的过程。拉格朗日乘数法解决了所提出方法所特有的实施问题。此外,本研究探索了应用贝叶斯分析来区分谐波分量和结构分量的可能性。通过仿真数据和实验测试数据验证了这些方法。还详细讨论了由于不同因素的变化引起的不确定性行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号