首页> 外文期刊>Mechanical systems and signal processing >A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
【24h】

A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes

机译:一种基于混合振型的结构非线性振动分析的新型模态叠加方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton’s method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.
机译:本文提出了一种基于混合模式形状概念的模态叠加方法,用于确定非线性结构的稳态振动响应。该方法专门针对具有非线性的系统而开发,其中系统的刚度可以采用不同的极限值。这些非线性系统的刚度变化使人们能够定义与极限等效刚度的每个值相对应的不同线性系统。此外,非线性系统的响应受这些线性系统的限制。在这项研究中,提出了一种模态叠加方法,该方法利用新颖的混合模式形状定义为极限线性系统的模态矢量的线性组合,以确定非线性系统的周期响应。在这种方法中,非线性系统的响应是根据混合模式而不是基础线性系统的模式编写的。这减少了为精确解而应保留的模式数量,进而减少了要求解的非线性方程式的数量。以这种方式,直接减少了用于响应计算的计算时间。在该解决方案中,通过使用描述函数方法将运动方程转换为一组非线性代数方程,并通过使用牛顿法和弧长连续法获得了数值解。开发的方法应用于两种不同的系统:集总参数模型和有限元模型。进行了几个案例研究,并将所提出的具有混合模态的模态叠加方法的精度和计算效率与利用基础线性系统的模态形状的经典模态叠加方法的精度和计算效率进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号