首页> 外文期刊>Mechanical systems and signal processing >Frequency-temporal-logic-based bearing fault diagnosis and fault interpretation using Bayesian optimization with Bayesian neural networks
【24h】

Frequency-temporal-logic-based bearing fault diagnosis and fault interpretation using Bayesian optimization with Bayesian neural networks

机译:贝叶斯神经网络贝叶斯优化的频率 - 颞逻辑基于轴承故障诊断和故障解释

获取原文
获取原文并翻译 | 示例

摘要

Rolling element bearings are widely used components in modern rotary machines, and accurate diagnosis and interpretation for faults of bearings are significant for equipment maintenance. This paper introduces a fault diagnosis method with a formal specification language, which overcomes the difficulty of understanding the decision process of fault diagnosis. The formal specification is written with a novel formal language, called frequency-temporal-logic, defining the time-frequency properties of time series signals, which not only is a classifier to diagnose the faults but also gives interpretations for the fault signals with its semantics. To find an optimal description for the fault signals, the Bayesian optimization with Bayesian neural networks has been utilized to infer the structure and parameters of the formal specification. The semantics of frequency-temporal-logic then gives the fault interpretation. Moreover, the quantitative semantics for the formal language is defined based on a novel satisfaction metric, which has a noise resistance property. Analysis of the proposed method shows that the formal description can deal with noisy signals and variable speed operations of the bearings. Finally, comparison experimental results indicate the proposed method can obtain high fault diagnosis accuracy.
机译:滚动元件轴承广泛使用现代旋转机器中的组件,准确的诊断和解释轴承故障对于设备维护很重要。本文介绍了一种具有形式规范语言的故障诊断方法,克服了了解故障诊断的决策过程。正式规范是用新颖的正式语言编写的,称为频率 - 时间逻辑,定义时间序列信号的时间频率属性,这不仅是诊断故障的分类器,而且还为其语义提供了对故障信号的解释。为了找到故障信号的最佳描述,已经利用了与贝叶斯神经网络的贝叶斯优化来推断出形式规范的结构和参数。然后频率 - 时间逻辑的语义给出了故障解释。此外,基于一种新的满意度度量来定义正式语言的定量语义,其具有抗噪性性能。提出的方法的分析表明,正式的描述可以处理嘈杂的信号和轴承的可变速度操作。最后,比较实验结果表明,所提出的方法可以获得高故障诊断精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号