首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults
【24h】

A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults

机译:考虑暂态和间歇故障的基于动态贝叶斯网络的故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Transient fault (TF) and intermittent fault (IF) of complex electronic systems are difficult to diagnose. As the performance of electronic products degrades over time, the results of fault diagnosis could be different at different times for the given identical fault symptoms. A dynamic Bayesian network (DBN)-based fault diagnosis methodology in the presence of TF and IF for electronic systems is proposed. DBNs are used to model the dynamic degradation process of electronic products, and Markov chains are used to model the transition relationships of four states, i.e., no fault, TF, IF, and permanent fault. Our fault diagnosis methodology can identify the faulty components and distinguish the fault types. Four fault diagnosis cases of the Genius modular redundancy control system are investigated to demonstrate the application of this methodology.
机译:复杂的电子系统的瞬时故障(TF)和间歇性故障(IF)难以诊断。由于电子产品的性能会随着时间的推移而下降,因此对于给定的相同故障症状,故障诊断的结果在不同时间可能会有所不同。提出了一种在电子系统中存在TF和IF的动态贝叶斯网络(DBN)故障诊断方法。 DBN用于建模电子产品的动态降级过程,而Markov链用于建模四个状态(即无故障,TF,IF和永久性故障)的过渡关系。我们的故障诊断方法可以识别故障组件并区分故障类型。对Genius模块化冗余控制系统的四个故障诊断案例进行了研究,以证明该方法的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号