首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Diagnosis of Intermittent Scan Chain Faults Through a Multistage Neural Network Reasoning Process
【24h】

Diagnosis of Intermittent Scan Chain Faults Through a Multistage Neural Network Reasoning Process

机译:通过多级神经网络推理过程诊断间歇扫描链故障

获取原文
获取原文并翻译 | 示例

摘要

Diagnosis of intermittent scan chain failures still remains a hard problem. In this article, we demonstrate that the use of artificial neural networks (ANNs) can lead to significantly higher accuracy. The key of this method is a multistage process incorporating ANNs with gradually refined focuses. During this process, the final fault suspect is elected through multiple rounds of ANN inference, instead of just one round. At each stage, identification of a proper Affine Group, used as the "candidate set of scan cells for the next round of ANN inference," will influence the final diagnostic accuracy. Thus, we propose a validation-based learning procedure for Affine Group derivation to further boost the final diagnostic accuracy. The experimental results on benchmark circuits have shown that this method is, on the average, 17.46% more accurate than a state-of-the-art commercial tool for intermittent stuck-at-0 faults.
机译:间歇性扫描链失败的诊断仍然是一个难题。在本文中,我们证明使用人工神经网络(ANNS)的使用可以显着提高更高的准确性。该方法的关键是一种多级过程,包括逐渐精制的重点。在此过程中,最终的故障嫌疑人通过多轮子推理选出,而不是一轮。在每个阶段,用作“下一轮候选扫描单元的候选扫描单元”的识别,将影响最终的诊断准确性。因此,我们提出了一种基于验证组衍生的验证的学习过程,以进一步提高最终的诊断准确性。基准电路的实验结果表明,这种方法平均而言比最先进的商业工具更准确地,用于间歇性困扰-0故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号