首页> 外文期刊>Mathematics and computers in simulation >Solving nonlinear systems and unconstrained optimization problems by hybridizing whale optimization algorithm and flower pollination algorithm
【24h】

Solving nonlinear systems and unconstrained optimization problems by hybridizing whale optimization algorithm and flower pollination algorithm

机译:用杂交鲸类优化算法和花授粉算法求解非线性系统和无约束优化问题

获取原文
获取原文并翻译 | 示例

摘要

This paper suggests a new hybrid algorithm by integrating two population-based algorithms: Whale Optimization Algorithm (WOA) and Flower Pollination Algorithm (FPA), to solve complex nonlinear systems and unconstrained optimization problems. WOFPA denotes the suggested algorithm, a hybrid Whale Optimization Algorithm and Flower Pollination Algorithm. Nonlinear systems can be cast into unconstrained optimization problems, called merit functions, where the optimal solutions for the merit functions are equivalent to the solutions of nonlinear systems. WOFPA aims to decrease the execution time and the complexity of WOA and FPA. WOFPA has the advantages of WOA and FPA; WOFPA is a high-quality algorithm to solve both problems, nonlinear systems and unconstrained optimization problems. For example, FPA may have a premature convergence in the local optima, and WOFPA subdues the disadvantage of FPA. Numerical experiments of 14 benchmarks nonlinear systems and 30 CEC 2014 benchmarks unconstrained optimization functions with various dimensions are employed to test the performance of WOFPA. To have a further investigation for the performance of WOFPA, WOFPA is compared with WOA, FPA, and other existing algorithms from the literature. Two non-parametric statistical tests, Wilcoxon statistical test and the Friedman test, are conducted for this study to check the performance of the proposed algorithms and other compared algorithms and the significance of our results. The experiment results demonstrate that WOFPA performs better than other algorithms in the literature by getting the optimum solutions for most nonlinear systems and optimization problems and proves its efficiency compared with other existing algorithms.
机译:本文通过集成基于群体的算法(WOA)和花授粉算法(FPA)来阐明一种新的混合算法,解决复杂的非线性系统和无约束优化问题。 WOFPA表示建议的算法,混合鲸优化算法和花授粉算法。非线性系统可以被铸造成无约束的优化问题,称为优点函数,其中优异功能的最佳解决方案等同于非线性系统的解决方案。 WOFPA旨在减少执行时间和WOA和FPA的复杂性。 WOFPA具有WOA和FPA的优势; WOFPA是一种解决问题,非线性系统和无约束优化问题的高质量算法。例如,FPA可以在局部最佳APOXA和WOFPA下涉及FPA的缺点。 14个基准非线性系统和30 CEC 2014基准的数值实验采用各种尺寸的无约束优化功能来测试WOFPA的性能。为了进一步调查WOFPA的性能,WOFPA与来自文献的WOA,FPA和其他现有算法进行比较。为本研究进行了两项非参数统计测试,Wilcoxon统计测试和弗里德曼测试,以检查所提出的算法和其他比较算法的性能以及我们结果的重要性。实验结果表明,WOFPA通过为大多数非线性系统和优化问题获得最佳解决方案,并与其他现有算法验证其效率,从文献中的其他算法表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号