首页> 外文期刊>Mathematics and computers in simulation >A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation
【24h】

A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation

机译:一种拉格朗日二次样条散差耦合方法,用于钢结构分数扩散方程

获取原文
获取原文并翻译 | 示例

摘要

In the current paper, for the time fractional diffusion equation with an exponential tempering, we propose a numerical algorithm based on the Lagrange-quadratic spline interpolations and the optimal technique. The discretized linear systems and some properties are investigated in detail. By using these properties, the coefficient matrix and the right-hand term at each time step are given to analyze the computational cost. Theoretical analyses show that this proposed method enjoys both stability and convergence order of O(τ~2 + h~4). Some numerical examples are provided to verify the practical feasibility and efficiency of the proposed scheme.
机译:在目前的纸张中,对于具有指数回火的时间分数扩散方程,我们提出了一种基于拉格朗日二次样条插值和最优技术的数值算法。详细研究了离散的线性系统和一些性质。通过使用这些属性,给出每个时间步骤的系数矩阵和右手术语来分析计算成本。理论分析表明,该提出的方法既有o(τ〜2 + h〜4)的稳定性和收敛顺序。提供了一些数值示例以验证所提出的方案的实用可行性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号