首页> 外文期刊>Mathematics and computers in simulation >Neural Network-based Robust Adaptive Control Of Nonlinear Systems With Unmodeled Dynamics
【24h】

Neural Network-based Robust Adaptive Control Of Nonlinear Systems With Unmodeled Dynamics

机译:基于神经网络的非建模动力学非线性系统鲁棒自适应控制

获取原文
获取原文并翻译 | 示例

摘要

A neural network-based robust adaptive control design scheme is developed for a class of nonlinear systems represented by input-output models with an unknown nonlinear function and unmodeled dynamics. By on-line approximating the unknown nonlinear functions and unmodeled dynamics by radial basis function (RBF) networks, the proposed approach does not require the unknown parameters to satisfy the linear dependence condition. It is proved that with the proposed control law, the closed-loop system is stable and the tracking error converges to zero in the presence of unmodeled dynamics and unknown nonlinearity. A simulation example is presented to demonstrate the method.
机译:针对一类具有未知非线性函数和未建模动力学的输入输出模型表示的非线性系统,开发了一种基于神经网络的鲁棒自适应控制设计方案。通过使用径向基函数(RBF)网络对未知的非线性函数和未建模的动力学进行在线逼近,该方法不需要未知的参数即可满足线性依赖条件。证明了所提出的控制律,在存在未建模的动力学和未知的非线性的情况下,闭环系统是稳定的并且跟踪误差收敛到零。给出了一个仿真实例来说明该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号