首页> 外文期刊>Mathematics and computers in simulation >Quad/triangle subdivision, nonhomogeneous refinement equation and polynomial reproduction
【24h】

Quad/triangle subdivision, nonhomogeneous refinement equation and polynomial reproduction

机译:四边形/三角形细分,非齐次细化方程和多项式再现

获取原文
获取原文并翻译 | 示例

摘要

The quad/triangular subdivision, whose control net and refined meshes consist of both quads and triangles, provides better visual quality of subdivision surfaces. While some theoretical results such as polynomial reproduction and smoothness analysis of quad/triangle schemes have been obtained in the literature, some issues such as the basis functions at quad/triangle vertices and design of interpolator quad/triangle schemes need further study. In our study of quad/triangle schemes, we observe that a quad/triangle subdivision scheme can be derived from a nonhomogeneous refinement equation. Hence, the basis functions at quad/triangle vertices are shifts of the refinable function associated with a nonhomogeneous refinement equation. In this paper a quad/triangle subdivision surface is expressed analytically as the linear combination of these basis functions and the polynomial reproduction of matrix-valued quad/triangle schemes is studied. The result on polynomial reproduction achieved here is critical for the smoothness analysis and construction of matrix-valued quad/triangle schemes. Several new schemes are also constructed.
机译:四边形/三角形细分,其控制网和细化的网格由四边形和三角形组成,可提供更好的细分表面视觉效果。虽然在文献中获得了多项式再现和四边形/三角形方案的平滑度分析等理论结果,但在四边形/三角形顶点处的基函数和内插器四边形/三角形方案的设计等问题仍需进一步研究。在我们对四边形/三角形方案的研究中,我们观察到四边形/三角形细分方案可以从非齐次的精细化方程中导出。因此,四边形/三角形顶点处的基函数是与非齐次细化方程关联的可细化函数的平移。本文将四边形/三角形细分表面解析为这些基函数的线性组合,并研究了矩阵值四边形/三角形方案的多项式再现。此处获得的多项式再现结果对于平滑度分析和矩阵值四边形/三角形方案的构造至关重要。还构建了几个新方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号