首页> 外文期刊>Mathematics and computers in simulation >Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions
【24h】

Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions

机译:分解多元多项式和非标准Cauchy-Riemann条件

获取原文
获取原文并翻译 | 示例

摘要

Motivated by previous work on the simplification of parametrizations of curves, in this paper we generalize the well-known notion of analytic polynomial (a bivariate polynomial P(x, y), with complex coefficients, which arises by substituting z → x + iy on a univariate polynomial p(z) ∈ C[z], i.e. p(z) → p(x + iy) = P(x, y)) to other finite field extensions, beyond the classical case of R is contained in C.In this general setting we obtain different properties on the factorization, gcd's and resultants of analytic polynomials, which seem to be new even in the context of Complex Analysis. Moreover, we extend the well-known Cauchy-Riemann conditions (for harmonic conjugates) to this algebraic framework, proving that the new conditions also characterize the components of generalized analytic polynomials.
机译:出于先前关于简化曲线参数化的工作的动机,在本文中,我们推广了解析多项式(双变量多项式P(x,y),众所周知的概念,它具有复系数,这是通过将z→x + iy代入一个单变量多项式p(z)∈C [z],即p(z)→p(x + iy)= P(x,y))到其他有限域扩展,C中不包含R的经典情况。在这种一般设置下,我们获得了因式分解,gcd和解析多项式的结果的不同属性,即使在复杂分析的情况下,这些属性似乎也是新的。此外,我们将众所周知的Cauchy-Riemann条件(用于谐波共轭)扩展到该代数框架,证明了新条件也表征了广义解析多项式的成分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号