首页> 外文期刊>Mathematics and computers in simulation >Analysis of inexact Krylov subspace methods for approximating the matrix exponential
【24h】

Analysis of inexact Krylov subspace methods for approximating the matrix exponential

机译:近似矩阵指数的不精确Krylov子空间方法分析

获取原文
获取原文并翻译 | 示例

摘要

Krylov subspace methods have proved quite effective at approximating the action of a large sparse matrix exponential on a vector. Their numerical robustness and matrix-free nature have enabled them to make inroads into a variety of applications. A case in point is solving the chemical master equation (CME) in the context of modeling biochemical reactions in biological cells. This is a challenging problem that gives rise to an extremely large matrix due to the curse of dimensionality. Inexact Krylov subspace methods that build on truncation techniques have helped solve some CME models that were considered computationally out of reach as recently as a few years ago. However, as models grow, truncating them means using an even smaller fraction of their whole extent, thereby introducing more inexactness. But experimental evidence suggests an apparent success and the aim of this study is to give theoretical insights into the reasons why. Essentially, we show that the truncation can be put in the framework of inexact Krylov methods that relax matrix-vector products and compute them expediently by trading accuracy for speed. This allows us to analyze both the residual (or defect) and the error of the resulting approximations to the matrix exponential from the viewpoint of inexact Krylov methods.
机译:事实证明,Krylov子空间方法在逼近大稀疏矩阵指数对矢量的作用时非常有效。它们的数值鲁棒性和无矩阵性质使它们能够涉足多种应用。一个典型的例子是在对生物细胞中的生化反应进行建模的背景下求解化学主方程(CME)。这是一个具有挑战性的问题,由于维数的诅咒而导致矩阵非常大。基于截断技术的不精确Krylov子空间方法已经帮助解决了一些CME模型,这些模型在几年前就被认为在计算上遥不可及。但是,随着模型的增长,将它们截断意味着使用了整个范围的甚至更小的部分,从而引入了更多的不精确性。但是实验证据表明取得了明显的成功,本研究的目的是对产生这种现象的原因提供理论见解。本质上,我们证明了可以将截断放到不精确的Krylov方法的框架中,该方法放宽矩阵向量乘积,并通过权衡速度的准确性方便地进行计算。从不精确的Krylov方法的角度来看,这使我们能够分析残差(或缺陷)和所得近似矩阵误差的误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号