首页> 外文期刊>BIT numerical mathematics >PRESERVING GEOMETRIC PROPERTIES OF THE EXPONENTIAL MATRIX BY BLOCK KRYLOV SUBSPACE METHODS
【24h】

PRESERVING GEOMETRIC PROPERTIES OF THE EXPONENTIAL MATRIX BY BLOCK KRYLOV SUBSPACE METHODS

机译:用块Krylov子空间方法保持指数矩阵的几何性质。

获取原文
获取原文并翻译 | 示例

摘要

Given a large square real matrix A and a rectangular tall matrix Q, many application problems require the approximation of the operation exp(A)Q. Under certain hypotheses on A, the matrix exp(A)Q preserves the orthogonality characteristics of Q; this property is particularly attractive when the associated application problem requires some geometric constraints to be satisfied. For small size problems numerical methods have been devised to approximate exp(A)Q while maintaining the structure properties. On the other hand, no algorithm for large A has been derived with similar preservation properties. In this paper we show that an appropriate use of the block Lanczos method allows one to obtain a structure preserving approximation to exp(A)Q when A is skew-symmetric or skew-symmetric and Hamiltonian. Moreover, for A Hamilton-ian we derive a new variant of the block Lanczos method that again preserves the geometric properties of the exact scheme. Numerical results are reported to support our theoretical findings, with particular attention to the numerical solution of linear dynamical systems by means of structure preserving integrators.
机译:给定一个大的正方形实矩阵A和一个矩形的高矩阵Q,许多应用问题都需要近似运算exp(A)Q。在A的某些假设下,矩阵exp(A)Q保留Q的正交性;当相关的应用程序问题需要满足一些几何约束时,此属性特别有吸引力。对于小尺寸问题,已经设计了数值方法来近似exp(A)Q,同时保持结构特性。另一方面,还没有派生出具有相似保留特性的大A算法。在本文中,我们表明,当A是斜对称或斜对称且具有哈密顿量时,适当地使用块Lanczos方法可以使人们获得保留近似exp(A)Q的结构。此外,对于汉密尔顿方程,我们推导了块Lanczos方法的新变体,该变体再次保留了精确方案的几何性质。报道了数值结果以支持我们的理论发现,尤其关注通过结构保持积分器进行的线性动力学系统的数值解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号