首页> 外文期刊>Mathematical Programming >A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid
【24h】

A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid

机译:凸优化方法,用于最小化椭圆形上不定二次函数的比

获取原文
获取原文并翻译 | 示例

摘要

We consider the nonconvex problem (RQ) of minimizing the ratio of two nonconvex quadratic functions over a possibly degenerate ellipsoid. This formulation is motivated by the so-called regularized total least squares problem (RTLS), which is a special case of the problem’s class we study. We prove that under a certain mild assumption on the problem’s data, problem (RQ) admits an exact semidefinite programming relaxation. We then study a simple iterative procedure which is proven to converge superlinearly to a global solution of (RQ) and show that the dependency of the number of iterations on the optimality tolerance grows as . Keywords Ratio of quadratic minimization - Nonconvex quadratic minimization - Semidefinite programming - Strong duality - Regularized total least squares - Fixed point algorithms - Convergence analysis Mathematics Subject Classification (2000) 90C22 - 90C25 - 62G05 This research is partially supported by the Israel Science Foundation, ISF grant #489-06.
机译:我们考虑使可能退化的椭球上的两个非凸二次函数之比最小的非凸问题(RQ)。这种提法是受所谓的正则化总最小二乘问题(RTLS)的启发,这是我们研究的问题类别的特例。我们证明,在对问题数据进行一定程度的温和假设后,问题(RQ)允许精确的半定程序松弛。然后,我们研究了一个简单的迭代过程,该过程被证明可以超线性地收敛到(RQ)的全局解,并表明迭代次数对最优公差的依赖性随着增长。二次最小化的比率-非凸二次最小化-半定规划-强对偶性-正则化总最小二乘-定点算法-收敛性分析数学主题分类(2000)90C22-90C25-62G05该研究得到了以色列科学基金会(ISF)的部分支持格兰特#489-06。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号