首页> 外文会议>International conference on numerical geometry, grid generation and scientific computing >Inexact Newton Method for Minimization of Convex Piecewise Quadratic Functions
【24h】

Inexact Newton Method for Minimization of Convex Piecewise Quadratic Functions

机译:凸分段分段二次函数最小化的不精确牛顿法

获取原文

摘要

An inexact Newton type method for numerical minimization of convex piecewise quadratic functions is considered and its convergence is analyzed. Earlier, a similar method was successfully applied to optimization problems arising in numerical grid generation. The method can be applied for computing a minimum norm nonnegative solution of underdetermined system of linear equations or for finding the distance between two convex polyhedra. The performance of the method is tested using sample data from NETLIB family of the University of Florida sparse matrix collection as well as quasirandom data.
机译:研究了凸分段分段二次函数数值最小化的不精确牛顿型方法,并对其收敛性进行了分析。早先,类似的方法已成功应用于数值网格生成中出现的优化问题。该方法可用于计算欠定线性方程组的最小范数非负解,或用于找到两个凸多面体之间的距离。使用佛罗里达大学稀疏矩阵集合的NETLIB系列的样本数据以及准随机数据来测试该方法的性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号