首页> 外文期刊>Mathematical Programming >Multicriteria optimization with a multiobjective golden section line search
【24h】

Multicriteria optimization with a multiobjective golden section line search

机译:多目标黄金分割线搜索的多准则优化

获取原文
获取原文并翻译 | 示例

摘要

This work presents an algorithm for multiobjective optimization that is structured as: (i) a descent direction is calculated, within the cone of descent and feasible directions, and (ii) a multiobjective line search is conducted over such direction, with a new multiobjective golden section segment partitioning scheme that directly finds line-constrained efficient points that dominate the current one. This multiobjective line search procedure exploits the structure of the line-constrained efficient set, presenting a faster compression rate of the search segment than single-objective golden section line search. The proposed multiobjective optimization algorithm converges to points that satisfy the Kuhn-Tucker first-order necessary conditions for efficiency (the Pareto-critical points). Numerical results on two antenna design problems support the conclusion that the proposed method can solve robustly difficult nonlinear multiobjective problems defined in terms of computationally expensive black-box objective functions.
机译:这项工作提出了一种用于多目标优化的算法,其结构为:(i)在下降锥和可行方向内计算下降方向,并且(ii)使用新的多目标黄金在该方向上进行多目标线搜索分段分割方案,可以直接找到控制当前点的线约束有效点。这种多目标线搜索过程利用了线约束有效集的结构,与单目标黄金分割线搜索相比,它提供了更快的搜索段压缩率。所提出的多目标优化算法收敛到满足Kuhn-Tucker效率一阶必要条件的点(帕累托临界点)。关于两个天线设计问题的数值结果支持以下结论:所提出的方法可以解决在计算上昂贵的黑匣子目标函数方面定义的鲁棒的非线性多目标问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号