首页> 外文期刊>Mathematical Problems in Engineering >Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material
【24h】

Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

机译:功能梯度材料组成的Timoshenko边缘开裂梁的几何非线性静力分析

获取原文
获取原文并翻译 | 示例

摘要

Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM) subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.
机译:研究了在大位移和大旋转情况下,由功能梯度材料(FGM)组成的边缘裂纹悬臂Timoshenko梁在自由端受到非跟随横向荷载的几何非线性静力分析。光束的材料特性根据指数分布在高度方向上变化。裂纹梁被建模为通过无质量弹性旋转弹簧连接的两个子梁的组合。在研究中,通过使用总拉格朗日季莫申科梁单元近似来构造梁的有限元。非线性问题是通过使用基于增量位移的有限元方法和Newton-Raphson迭代方法来解决的。对各种数量的有限元进行了收敛研究。在研究中,详细研究了裂纹的位置,裂纹的深度以及各种材料分布对FGM梁非线性静响应的影响。此外,详细研究了边缘裂纹FGM梁的几何线性和非线性分析之间的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号