首页> 外文期刊>Mathematical Problems in Engineering >Multiple Kernel Dimensionality Reduction via Ratio-Trace and Marginal Fisher Analysis
【24h】

Multiple Kernel Dimensionality Reduction via Ratio-Trace and Marginal Fisher Analysis

机译:通过比率和边缘Fisher分析进行多种核数减少

获取原文
获取原文并翻译 | 示例

摘要

Traditional supervised multiple kernel learning (MKL) for dimensionality reduction is generally an extension of kernel discriminant analysis (KDA), which has some restrictive assumptions. In addition, they generally are based on graph embedding framework. A more general multiple kernel-based dimensionality reduction algorithm, called multiple kernel marginal Fisher analysis (MKL-MFA), is presented for supervised nonlinear dimensionality reduction combined with ratio-race optimization problem. MKL-MFA aims at relaxing the restrictive assumption that the data of each class is of a Gaussian distribution and finding an appropriate convex combination of several base kernels. To improve the efficiency of multiple kernel dimensionality reduction, the spectral regression frameworks are incorporated into the optimization model. Furthermore, the optimal weights of predefined base kernels can be obtained by solving a different convex optimization. Experimental results on benchmark datasets demonstrate that MKL-MFA outperforms the state-of-the-art supervised multiple kernel dimensionality reduction methods.
机译:传统监督的多维内核学习(MKL)通常是核心判别分析(KDA)的延伸,这具有一些限制性假设。此外,它们通常基于嵌入框架的图形。一种更一般的多个基于核的维度减少算法,称为多个内核边缘Fisher分析(MKL-MFA),用于监督非线性维数减少与比率 - 种族优化问题相结合。 MKL-MFA旨在放松限制性假设,即每个类的数据是高斯分布,并找到几个基础内核的适当凸组合。为了提高多个核数度减少的效率,谱回归框架被纳入优化模型。此外,通过求解不同的凸透优化,可以获得预定义基质核的最佳权重。基准数据集的实验结果表明,MKL-MFA优于最先进的监督多核维度减少方法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第1期|6941475.1-6941475.8|共8页
  • 作者单位

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

    Jiangsu Vocat Inst Architectural Technol Sch Intelligent Mfg Xuzhou 221008 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

    China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号