首页> 外文期刊>Mathematical Problems in Engineering >Multiple Kernel Dimensionality Reduction via Ratio-Trace and Marginal Fisher Analysis
【24h】

Multiple Kernel Dimensionality Reduction via Ratio-Trace and Marginal Fisher Analysis

机译:通过比率跟踪和边际Fisher分析减少多核维数

获取原文
获取原文并翻译 | 示例

摘要

Traditional supervised multiple kernel learning (MKL) for dimensionality reduction is generally an extension of kernel discriminant analysis (KDA), which has some restrictive assumptions. In addition, they generally are based on graph embedding framework. A more general multiple kernel-based dimensionality reduction algorithm, called multiple kernel marginal Fisher analysis (MKL-MFA), is presented for supervised nonlinear dimensionality reduction combined with ratio-race optimization problem. MKL-MFA aims at relaxing the restrictive assumption that the data of each class is of a Gaussian distribution and finding an appropriate convex combination of several base kernels. To improve the efficiency of multiple kernel dimensionality reduction, the spectral regression frameworks are incorporated into the optimization model. Furthermore, the optimal weights of predefined base kernels can be obtained by solving a different convex optimization. Experimental results on benchmark datasets demonstrate that MKL-MFA outperforms the state-of-the-art supervised multiple kernel dimensionality reduction methods.
机译:传统的用于减少维数的监督多核学习(MKL)通常是核仁判别分析(KDA)的扩展,它具有一些限制性假设。另外,它们通常基于图嵌入框架。提出了一种更通用的基于多核的降维算法,称为多核边际费舍尔分析(MKL-MFA),用于结合比例竞赛优化问题的有监督非线性降维。 MKL-MFA的目的是放宽每个类的数据都是高斯分布的限制性假设,并找到几个基本核的适当凸组合。为了提高多核降维的效率,将光谱回归框架纳入优化模型。此外,可以通过求解不同的凸优化来获得预定义基本内核的最佳权重。在基准数据集上的实验结果表明,MKL-MFA优于先进的监督多核降维方法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第1期|6941475.1-6941475.8|共8页
  • 作者单位

    China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China;

    China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China;

    China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China;

    Jiangsu Vocat Inst Architectural Technol, Sch Intelligent Mfg, Xuzhou 221008, Jiangsu, Peoples R China;

    China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China;

    China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号