首页> 外文期刊>Neurocomputing >Spectral regression based marginal Fisher analysis dimensionality reduction algorithm
【24h】

Spectral regression based marginal Fisher analysis dimensionality reduction algorithm

机译:基于谱回归的边缘Fisher分析降维算法

获取原文
获取原文并翻译 | 示例

摘要

AbstractTraditional nonlinear dimensionality reduction methods, such as multiple kernel dimensionality reduction and nonlinear spectral regression (SR), are generally regarded as extended versions of linear discriminant analysis (LDA) in the supervised case. As is well known, LDA has the restrictive assumption that the data of each class is of a Gaussian distribution. Thus, the performance of these methods will be degraded if such an assumption is not hold. Although some methods based on marginal Fisher analysis are proposed to overcome the drawback of LDA, they have to solve the problem of dense metrics generalized eigenvalue decomposition, which is very time-consuming. To address these issues, in this paper, marginal Fisher analysis criterion based on extreme learning machine (ELM) is proposed to improve spectral regression and kernel marginal Fisher analysis. It is proved that the proposed marginal Fisher analysis is a special case of traditional kernel marginal Fisher analysis. Based on the proposed criterion, a novel supervised dimensionality reduction algorithm is presented by virtue of ELM and spectral regression. Experimental results on benchmark datasets validate that the proposed algorithm outperforms the state-of-the-art nonlinear dimensionality reduction methods in supervised scenarios.
机译: 摘要 传统的非线性降维方法,例如多核降维和非线性光谱回归(SR),通常被认为是线性判别分析(LDA)的扩展版本。监督案件。众所周知,LDA具有限制性假设,即每个类别的数据都是高斯分布的。因此,如果不保持这种假设,这些方法的性能将下降。尽管提出了一些基于边际Fisher分析的方法来克服LDA的缺点,但它们必须解决密集度量广义特征值分解的问题,这非常耗时。为了解决这些问题,本文提出了一种基于极限学习机(ELM)的边际Fisher分析准则,以改善频谱回归和核边际Fisher分析。实践证明,提出的边际Fisher分析是传统核边际Fisher分析的特例。基于提出的判据,提出了一种新的有监督的降维算法。在基准数据集上的实验结果证明,该算法在监督场景下的性能优于最新的非线性降维方法。

著录项

  • 来源
    《Neurocomputing》 |2018年第14期|101-107|共7页
  • 作者单位

    School of Computer Science and Technology, China University of Mining and Technology,Insititute of Electrics, Chinese Academy of Sciences;

    School of Computer Science and Technology, China University of Mining and Technology;

    School of Computer Science and Technology, China University of Mining and Technology;

    Internet of Things Perception Mine Research Center, University of Mining and Technology, China;

    School of Computer Science and Technology, China University of Mining and Technology;

    School of Computer Science and Technology, China University of Mining and Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Marginal Fisher analysis; Spectral regression; Extreme learning machine (ELM); Dimensionality reduction;

    机译:边际Fisher分析;谱回归;极限学习机(ELM);降维;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号