首页> 外文期刊>Mathematical Problems in Engineering >A Novel EM Implementation for Initial Alignment of SINS Based on Particle Filter and Particle Swarm Optimization
【24h】

A Novel EM Implementation for Initial Alignment of SINS Based on Particle Filter and Particle Swarm Optimization

机译:基于粒子滤波器和粒子群优化的SINS初始对准的新型EM实施

获取原文
获取原文并翻译 | 示例

摘要

For nonlinear systems in which the measurement noise parameters vary over time, adaptive nonlinear filters can be applied to precisely estimate the states of systems. The expectation maximization (EM) algorithm, which alternately takes an expectation- (E-) step and a maximization- (M-) step, has been proposed to construct a theoretical framework for the adaptive nonlinear filters. Previous adaptive nonlinear filters based on the EM employ analytical algorithms to develop the two steps, but they cannot achieve high filtering accuracy because the strong nonlinearity of systems may invalidate the Gaussian assumption of the state distribution. In this paper, we propose an EM-based adaptive nonlinear filter APF to solve this problem. In the E-step, an improved particle filter PF_new is proposed based on the Gaussian sum approximation (GSA) and the Monte Carlo Markov chain (MCMC) to achieve the state estimation. In the M-step, the particle swarm optimization (PSO) is applied to estimate the measurement noise parameters. The performances of the proposed algorithm are illustrated in the simulations with Lorenz 63 model and in a semiphysical experiment of the initial alignment of the strapdown inertial navigation system (SINS) in large misalignment angles.
机译:对于其中测量噪声参数随时间变化而变化的非线性系统,可以应用自适应非线性滤波器来精确估计系统状态。已经提出了已经提出了对预期(E-)步骤的预期最大化(EM)算法和最大化 - (M-)步骤,以构建自适应非线性滤波器的理论框架。以前的基于EM采用分析算法的自适应非线性滤波器来开发两个步骤,但它们无法实现高滤波精度,因为系统的强非线性可能使高斯的稳定性的状态分布无效。在本文中,我们提出了一种基于EM的自适应非线性滤波器来解决这个问题。在电子步骤中,基于高斯和近似(GSA)和蒙特卡罗马尔可夫链(MCMC)提出改进的粒子滤波器PF_NEW以实现状态估计。在M-DEPS中,施加粒子群优化(PSO)以估计测量噪声参数。所提出的算法的性能在Lorenz 63模型的模拟中示出,并且在大错位角度的初始对准的半体验实验中。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第4期|6793175.1-6793175.12|共12页
  • 作者单位

    BIT Sch Automat Beijing 100081 Peoples R China;

    BIT Sch Automat Beijing 100081 Peoples R China;

    BIT Sch Automat Beijing 100081 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号