首页> 外文期刊>Mathematical Problems in Engineering >A Novel EM Implementation for Initial Alignment of SINS Based on Particle Filter and Particle Swarm Optimization
【24h】

A Novel EM Implementation for Initial Alignment of SINS Based on Particle Filter and Particle Swarm Optimization

机译:基于粒子滤波和粒子群算法的捷联惯导初始对准的新型EM实现

获取原文
获取原文并翻译 | 示例

摘要

For nonlinear systems in which the measurement noise parameters vary over time, adaptive nonlinear filters can be applied to precisely estimate the states of systems. The expectation maximization (EM) algorithm, which alternately takes an expectation- (E-) step and a maximization- (M-) step, has been proposed to construct a theoretical framework for the adaptive nonlinear filters. Previous adaptive nonlinear filters based on the EM employ analytical algorithms to develop the two steps, but they cannot achieve high filtering accuracy because the strong nonlinearity of systems may invalidate the Gaussian assumption of the state distribution. In this paper, we propose an EM-based adaptive nonlinear filter APF to solve this problem. In the E-step, an improved particle filter PF_new is proposed based on the Gaussian sum approximation (GSA) and the Monte Carlo Markov chain (MCMC) to achieve the state estimation. In the M-step, the particle swarm optimization (PSO) is applied to estimate the measurement noise parameters. The performances of the proposed algorithm are illustrated in the simulations with Lorenz 63 model and in a semiphysical experiment of the initial alignment of the strapdown inertial navigation system (SINS) in large misalignment angles.
机译:对于其中测量噪声参数随时间变化的非线性系统,可以将自适应非线性滤波器应用于精确估计系统状态。提出了期望最大化(EM)算法,该算法交替采用期望(E-)步骤和最大化(M-)步骤,以构建自适应非线性滤波器的理论框架。先前基于EM的自适应非线性滤波器采用解析算法来开发这两个步骤,但是由于系统的强非线性可能会使状态分布的高斯假设无效,因此它们无法实现较高的滤波精度。在本文中,我们提出了一种基于EM的自适应非线性滤波器APF来解决此问题。在E步中,基于高斯和近似(GSA)和蒙特卡洛马尔可夫链(MCMC)提出了一种改进的粒子滤波器PF_new,以实现状态估计。在M步中,应用粒子群优化(PSO)估计测量噪声参数。在Lorenz 63模型的仿真中以及捷联惯性导航系统(SINS)在大偏心角下的初始对准的半物理实验中,说明了所提出算法的性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第4期|6793175.1-6793175.12|共12页
  • 作者单位

    BIT, Sch Automat, Beijing 100081, Peoples R China;

    BIT, Sch Automat, Beijing 100081, Peoples R China;

    BIT, Sch Automat, Beijing 100081, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号