首页> 外文期刊>Journal of information and computational science >The Application of Adaptive Square Root Cubature Particle Filtering Algorithm in Initial Alignment of Large Azimuth Misalignment in SINS
【24h】

The Application of Adaptive Square Root Cubature Particle Filtering Algorithm in Initial Alignment of Large Azimuth Misalignment in SINS

机译:自适应平方根容器粒子滤波算法在捷联惯导大方位角未对准初始对准中的应用

获取原文
获取原文并翻译 | 示例

摘要

The error model of Strap-down Inertial Navigation System (SINS) initial alignment is nonlinear under large azimuth misalignment angle condition, and it could be processed by the Particle Filter (PF) algorithm. Because the importance density function of the standard particle filter algorithm is difficult to select, a new algorithm of the Cubature Particle Filter (CPF) is proposed in this paper. In the new algorithm, the importance density function of standard particle filter is obtained by Adaptive Square root Cubature Kalman Filter (ASCKF), square root decomposition is chosen to enhance the numerical robustness and ensure that the state covariance matrix is positive definite. To meet the realtime requirement, the adaptive factor is introduced to control system model error. As the computer simulation results are shown that this algorithm could reduce the effect of inaccurate noise statistical model and it is a very effective nonlinear filtering algorithm.
机译:捷联惯性导航系统(SINS)初始对准的误差模型在大方位角未对准角条件下是非线性的,可以通过粒子滤波(PF)算法进行处理。由于标准粒子滤波算法的重要性密度函数难以选择,本文提出了一种新的Cubeture粒子滤波算法。在新算法中,通过自适应平方根Cubature卡尔曼滤波器(ASCKF)获得标准粒子滤波器的重要性密度函数,选择平方根分解以增强数值鲁棒性并确保状态协方差矩阵为正定。为了满足实时性要求,引入自适应因子来控制系统模型误差。计算机仿真结果表明,该算法可以减少噪声统计模型不准确的影响,是一种非常有效的非线性滤波算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号