首页> 外文期刊>Mathematical Problems in Engineering >Evaluation of a Depth-Based Multivariate k-Nearest Neighbor Resampling Method with Stormwater Quality Data
【24h】

Evaluation of a Depth-Based Multivariate k-Nearest Neighbor Resampling Method with Stormwater Quality Data

机译:利用雨水质量数据评估基于深度的多元k最近邻重采样方法

获取原文
获取原文并翻译 | 示例

摘要

A nonparametric simulation model (k-nearest neighbor resampling, KNNR) for water quality analysis involving geographic information is suggested to overcome the drawbacks of parametric models. Geographic information is, however, not appropriately handled in the KNNR nonparametric model. In the current study, we introduce a novel statistical notion, called a "depth function," in the classical KNNR model to appropriately manipulate geographic information in simulating stormwater quality. An application is presented for a case study of the total suspended solids throughout the entire United States. The stormwater total suspended solids concentration data indicated that the proposed model significantly improves the simulation performance compared with the existing KNNR model.
机译:为了克服参数模型的缺点,建议使用非参数模拟模型(k近邻重采样,KNNR)来处理涉及地理信息的水质。但是,在KNNR非参数模型中未正确处理地理信息。在当前的研究中,我们在经典的KNNR模型中引入一种称为“深度函数”的新颖统计概念,以在模拟雨水质量时适当地操纵地理信息。提出了一项针对整个美国总悬浮固体的案例研究的申请。雨水总悬浮物浓度数据表明,与现有的KNNR模型相比,该模型显着提高了仿真性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第9期|404198.1-404198.7|共7页
  • 作者单位

    Department of Civil Engineering, ERI, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 660-701, Republic of Korea;

    Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, UAE;

    Canada Research Chair on the Estimation of Hydrometeorological Variables, INRS-ETE, 490 De La Couronne, Quebec, QC, Canada G1K 9A9;

    Department of Civil & Environmental System Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号