首页> 外文会议>International conference on image processing, computer vision, pattern recognition;IPCV 2011 >EVALUATION OF FAST K-NEAREST NEIGHBORS SEARCH METHODS USING REAL DATA SETS
【24h】

EVALUATION OF FAST K-NEAREST NEIGHBORS SEARCH METHODS USING REAL DATA SETS

机译:使用实数据集评估快速K近邻搜索方法

获取原文

摘要

The problem of k-nearest neighbors (kNN) search is to find nearest k neighbors from a given data set for a query point. To speed up the finding process of nearest k neighbors, many fast kNN search algorithms were proposed. The performance of fast kNN search algorithms is highly influenced by the number of dimensions, number of data points, and data distribution of a data set. In the extreme case, the performance of a fast kNN search algorithm may be poorer than the full search algorithm. To help understand the performance of fast kNN search algorithms on data sets of different types, five fast algorithms were tested in this paper using multiple real data sets. The experimental results of the paper will be very useful in choosing a fast kNN search algorithm for an unknown data set.
机译:k最近邻居(kNN)搜索的问题是从查询点的给定数据集中找到最近的k个邻居。为了加快最近k个邻居的查找过程,提出了许多快速的kNN搜索算法。快速kNN搜索算法的性能在很大程度上受维度数,数据点数和数据集的数据分布的影响。在极端情况下,快速kNN搜索算法的性能可能比完整搜索算法差。为了帮助理解快速kNN搜索算法在不同类型的数据集上的性能,本文使用多个真实数据集测试了五种快速算法。本文的实验结果对于选择未知数据集的快速kNN搜索算法将非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号