首页> 外文期刊>Mathematical Problems in Engineering >Self-Similarity Superresolution for Resource-Constrained Image Sensor Node in Wireless Sensor Networks
【24h】

Self-Similarity Superresolution for Resource-Constrained Image Sensor Node in Wireless Sensor Networks

机译:无线传感器网络中资源受限的图像传感器节点的自相似超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Wireless sensor networks, in combination with image sensors, open up a grand sensing application field. It is a challenging problem to recover a high resolution (HR) image from its low resolution (LR) counterpart, especially for low-cost resource-constrained image sensors with limited resolution. Sparse representation-based techniques have been developed recently and increasingly to solve this ill-posed inverse problem. Most of these solutions are based on an external dictionary learned from huge image gallery, consequently needing tremendous iteration and long time to match. In this paper, we explore the self-similarity inside the image itself, and propose a new combined self-similarity superresolution (SR) solution, with low computation cost and high recover performance. In the self-similarity image super resolution model (SSIR), a small size sparse dictionary is learned from the image itself by the methods such as KSVD. The most similar patch is searched and specially combined during the sparse regulation iteration. Detailed information, such as edge sharpness, is preserved more faithfully and clearly. Experiment results confirm the effectiveness and efficiency of this double self-learning method in the image super resolution.
机译:无线传感器网络与图像传感器的结合,开辟了广阔的传感应用领域。从其低分辨率(LR)副本中恢复高分辨率(HR)图像是一个挑战性的问题,尤其是对于分辨率有限的低成本资源受限的图像传感器而言。最近已经开发了基于稀疏表示的技术,并且越来越多地解决这种不适定的逆问题。这些解决方案中的大多数都是基于从庞大的图片库中学习到的外部词典,因此需要大量的迭代和长时间的匹配。在本文中,我们探索了图像本身内部的自相似性,并提出了一种新的组合自相似性超分辨率(SR)解决方案,该解决方案具有较低的计算成本和较高的恢复性能。在自相似图像超分辨率模型(SSIR)中,通过诸如KSVD的方法从图像本身中学习了一个小型的稀疏字典。在稀疏规则迭代过程中,搜索最相似的补丁并将其特别组合。诸如边缘清晰度之类的详细信息可以更真实,更清晰地保存。实验结果证实了这种双重自学习方法在图像超分辨率中的有效性和效率。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2014年第1期|719408.1-719408.10|共10页
  • 作者单位

    Department of Information Science and Electronic Engineering, Zhejiang Provincial Key Laboratory of Information Network Technology, Zhejiang University, Hangzhou 310027, China;

    Department of Information Science and Electronic Engineering, Zhejiang Provincial Key Laboratory of Information Network Technology, Zhejiang University, Hangzhou 310027, China;

    Department of Information Science and Electronic Engineering, Zhejiang Provincial Key Laboratory of Information Network Technology, Zhejiang University, Hangzhou 310027, China;

    Department of Information Science and Electronic Engineering, Zhejiang Provincial Key Laboratory of Information Network Technology, Zhejiang University, Hangzhou 310027, China;

    Department of Information Science and Electronic Engineering, Zhejiang Provincial Key Laboratory of Information Network Technology, Zhejiang University, Hangzhou 310027, China;

    Department of Automation, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xian 710049, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号