首页> 外文期刊>Mathematical Problems in Engineering >Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models
【24h】

Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

机译:使用人工神经网络模型预测自行车交通的自由流动速度和碰撞风险

获取原文
获取原文并翻译 | 示例

摘要

Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles' free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN) models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists' characteristics) were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists' characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.
机译:自由流动速度是衡量交通性能的基本指标,并且已经发现会影响碰撞风险的严重性。但是,以前的研究缺乏对自行车自由流动速度影响因素的分析和建模。这项研究的主要重点是开发多层反向传播人工神经网络(BPANN)模型,用于预测分离自行车道上的自由流动速度和碰撞风险。考虑到输入变量的不同组合(例如,道路宽度,交通状况,自行车类型和骑车人的特征),开发了四种不同的模型。从中国杭州的11条自行车道上收集了459个现场数据样本,其中70%用于训练,15%用于验证和15%用于测试。结果表明,考虑自行车类型的输入变量和骑车人的特征将有效地提高预测模型的准确性。同时,与骑车人的特征相比,自行车类型的参数对预测自行车的自由流动速度具有更大的影响。这些发现可能有助于评估,规划和管理自行车的安全性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2015年第20期|212050.1-212050.11|共11页
  • 作者单位

    Jilin Univ, Coll Transportat, Changchun 130022, Peoples R China|Zhejiang Police Coll, Dept Traff Management Engn, Hangzhou 310053, Zhejiang, Peoples R China;

    Zhejiang Police Coll, Dept Traff Management Engn, Hangzhou 310053, Zhejiang, Peoples R China;

    Jilin Univ, Coll Transportat, Changchun 130022, Peoples R China;

    Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Zhejiang, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号