首页> 外文期刊>Mathematical Problems in Engineering >Large-Scale Portfolio Optimization Using Multiobjective Evolutionary Algorithms and Preselection Methods
【24h】

Large-Scale Portfolio Optimization Using Multiobjective Evolutionary Algorithms and Preselection Methods

机译:使用多目标进化算法和预选方法的大规模投资组合优化

获取原文
获取原文并翻译 | 示例

摘要

Portfolio optimization problems involve selection of different assets to invest in order to maximize the overall return and minimize the overall risk simultaneously. The complexity of the optimal asset allocation problem increases with an increase in the number of assets available to select from for investing. The optimization problem becomes computationally challenging when there are more than a few hundreds of assets to select from. To reduce the complexity of large-scale portfolio optimization, two asset preselection procedures that consider return and risk of individual asset and pairwise correlation to remove assets that may not potentially be selected into any portfolio are proposed in this paper. With these asset preselection methods, the number of assets considered to be included in a portfolio can be increased to thousands. To test the effectiveness of the proposed methods, a NormalizedMultiobjective Evolutionary Algorithmbased onDecomposition (NMOEA/D) algorithmand several other commonly usedmultiobjective evolutionary algorithms are applied and compared. Six experiments with different settings are carried out. The experimental results show that with the proposed methods the simulation time is reduced while return-risk trade-off performances are significantly improved. Meanwhile, the NMOEA/D is able to outperform other compared algorithms on all experiments according to the comparative analysis.
机译:投资组合优化问题涉及选择不同的资产进行投资,以最大程度地提高总体收益,同时最大程度降低总体风险。最佳资产分配问题的复杂性随着可供选择的可供投资的资产数量的增加而增加。当有数百种资产可供选择时,优化问题在计算上将具有挑战性。为了降低大规模投资组合优化的复杂性,本文提出了两种资产预选程序,该程序考虑了单个资产的收益和风险以及成对相关性,以去除可能无法选择到任何投资组合中的资产。使用这些资产预选方法,可以将被认为包含在投资组合中的资产数量增加到数千个。为了验证所提方法的有效性,应用并比较了一种基于分解的归一化多目标进化算法(NMOEA / D)和其他几种常用的多目标进化算法。进行了六个具有不同设置的实验。实验结果表明,所提出的方法减少了仿真时间,同时显着提高了收益-风险权衡的性能。同时,根据比较分析,NMOEA / D能够在所有实验中胜过其他比较算法。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第2017期|4197914.1-4197914.14|共14页
  • 作者单位

    Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Peoples R China|Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Peoples R China;

    Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Peoples R China;

    Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Peoples R China;

    Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Peoples R China|Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R China;

    Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号