首页> 外文期刊>IEEE transactions on evolutionary computation >A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large-Scale Variables
【24h】

A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large-Scale Variables

机译:大型变量的多目标优化问题的基于决策变量分析的多目标进化算法

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art multiobjective evolutionary algorithms (MOEAs) treat all the decision variables as a whole to optimize performance. Inspired by the cooperative coevolution and linkage learning methods in the field of single objective optimization, it is interesting to decompose a difficult high-dimensional problem into a set of simpler and low-dimensional subproblems that are easier to solve. However, with no prior knowledge about the objective function, it is not clear how to decompose the objective function. Moreover, it is difficult to use such a decomposition method to solve multiobjective optimization problems (MOPs) because their objective functions are commonly conflicting with one another. That is to say, changing decision variables will generate incomparable solutions. This paper introduces interdependence variable analysis and control variable analysis to deal with the above two difficulties. Thereby, an MOEA based on decision variable analyses (DVAs) is proposed in this paper. Control variable analysis is used to recognize the conflicts among objective functions. More specifically, which variables affect the diversity of generated solutions and which variables play an important role in the convergence of population. Based on learned variable linkages, interdependence variable analysis decomposes decision variables into a set of low-dimensional subcomponents. The empirical studies show that DVA can improve the solution quality on most difficult MOPs. The code and supplementary material of the proposed algorithm are available at .
机译:最新的多目标进化算法(MOEA)将所有决策变量作为一个整体来处理,以优化性能。受单目标优化领域中协作协同进化和链接学习方法的启发,将一个困难的高维问题分解为一组更易于解决的较简单和低维的子问题很有趣。但是,由于没有关于目标函数的先验知识,因此不清楚如何分解目标函数。而且,由于这种分解方法的目标功能通常相互冲突,因此很难使用这种分解方法来解决多目标优化问题。也就是说,改变决策变量将产生无与伦比的解决方案。本文介绍了相互依赖变量分析和控制变量分析,以解决上述两个困难。因此,本文提出了一种基于决策变量分析(DVA)的MOEA。控制变量分析用于识别目标函数之间的冲突。更具体地说,哪些变量影响生成的解的多样性,哪些变量在总体收敛中起重要作用。基于学习到的变量链接,相互依赖变量分析将决策变量分解为一组低维子组件。实证研究表明,DVA可以提高大多数困难MOP的解决方案质量。该算法的代码和补充材料可在上找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号