首页> 外文期刊>Mathematical Problems in Engineering >Output Feedback Finite-Time Stabilization of Systems Subject to Holder Disturbances via Continuous Fractional Sliding Modes
【24h】

Output Feedback Finite-Time Stabilization of Systems Subject to Holder Disturbances via Continuous Fractional Sliding Modes

机译:通过连续小数滑模,受到持有人干扰的系统的输出反馈有限时间稳定

获取原文
获取原文并翻译 | 示例

摘要

The problem of designing a continuous control to guarantee finite-time tracking based on output feedback for a system subject to a Holder disturbance has remained elusive. The main difficulty stems from the fact that such disturbance stands for a function that is continuous but not necessarily differentiable in any integer-order sense, yet it is fractional-order differentiable. This problem imposes a formidable challenge of practical interest in engineering because (i) it is common that only partial access to the state is available and, then, output feedback is needed; (ii) such disturbances are present in more realistic applications, suggesting a fractional-order controller; and (iii) continuous robust control is a must in several control applications. Consequently, these stringent requirements demand a sound mathematical framework for designing a solution to this control problem. To estimate the full state in finite-time, a high-order sliding mode-based differentiator is considered. Then, a continuous fractional differintegral sliding mode is proposed to reject Holder disturbances, as well as for uncertainties and unmodeled dynamics. Finally, a homogeneous closed-loop system is enforced by means of a continuous nominal control, assuring finite-time convergence. Numerical simulations are presented to show the reliability of the proposed method.
机译:对于受制于Holder干扰的系统,设计连续的控制以保证基于输出反馈的有限时间跟踪的问题仍然难以解决。主要困难来自于这样一个事实,即这种扰动代表的是一个连续的函数,但不一定在任何整数阶意义上都是可微的,但它是分数阶可微的。这个问题对工程实践提出了巨大的挑战,因为(i)通常只有部分访问状态可用,然后需要输出反馈; (ii)这种干扰存在于更实际的应用中,建议使用分数阶控制器; (iii)在几种控制应用中,持续鲁棒控制是必须的。因此,这些严格的要求需要一个合理的数学框架来设计该控制问题的解决方案。为了在有限时间内估计满状态,考虑了基于高阶滑模的微分器。然后,提出了一种连续的分数阶微分积分滑模,以拒绝Holder干扰,以及不确定性和未建模动力学。最后,通过连续的名义控制来实施均质的闭环系统,以确保有限的时间收敛。数值仿真表明了该方法的可靠性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第9期|3146231.1-3146231.8|共8页
  • 作者单位

    Autonomous Univ Tamaulipas, Elect & Elect Engn Dept, Reynosa Rodhe Campus, Reynosa, Tamps, Mexico;

    Res Ctr Adv Studies, Robot & Adv Mfg Dept, Saltillo Campus, Ramos Arizpe, Coah, Mexico;

    Res Ctr Adv Studies, Robot & Adv Mfg Dept, Saltillo Campus, Ramos Arizpe, Coah, Mexico;

    Autonomous Univ Tamaulipas, Elect & Elect Engn Dept, Reynosa Rodhe Campus, Reynosa, Tamps, Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号