首页> 外文期刊>Mathematical Problems in Engineering >The Snap Tension Analysis of Taut-Slack Mooring Line with tanh Method
【24h】

The Snap Tension Analysis of Taut-Slack Mooring Line with tanh Method

机译:张紧法系紧索的张紧分析

获取原文
获取原文并翻译 | 示例

摘要

The continuous model is introduced, and the nonlinear partial differential equations of taut-slack mooring line system are transferred to nonlinear algebraic equations through tanh method, and four solitary solutions are obtained further. At the same time, to express the results clearly, the curve surfaces of strains, displacements, and tension are plotted. The results show that there are four different solutions in the system. With the pretension increasing, the tension changes from one solitary solution to snap tension, and when the pretension is increased further, the curve converts to continuous line, until straight line, which is corresponding to the taut mooring line. In the process of increasing of pretension, the mooring line transfers from slack to taut, accompanied with tension skipping, which is reduced by the system parameters, and different combination of parameters may introduce different tension in line, and the uncertainty may cause the breakage of mooring system. The results have an agreement with experiment, which shows that the calculating method in this paper may be believable and feasible. This work may provide reference for design of mooring system.
机译:介绍了连续模型,通过tanh法将张拉-松弛系泊缆系统的非线性偏微分方程转换为非线性代数方程,并进一步获得了四个孤立解。同时,为清楚表示结果,绘制了应变,位移和张力的曲线图。结果表明,系统中存在四种不同的解决方案。随着预张力的增加,张力从一种单独的解决方案更改为折断张力,并且当预张力进一步增加时,曲线将转换为实线,直到直线,该直线对应于绷紧的系泊线。在增加预应力的过程中,系泊绳由松弛过渡到拉紧,并伴随着张力跳跃,这被系统参数所减小,并且不同的参数组合可能会在管路中引入不同的张力,不确定性可能会导致断裂。系泊系统。结果与实验结果吻合,表明本文的计算方法是可行的。这项工作可以为系泊系统的设计提供参考。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第8期|8519523.1-8519523.13|共13页
  • 作者单位

    Tianjin Univ, Tianjin Key Lab Nonlinear Dynam & Chaos Control, Sch Mech Engn, Tianjin 300072, Peoples R China;

    Tianjin Univ, Tianjin Key Lab Nonlinear Dynam & Chaos Control, Sch Mech Engn, Tianjin 300072, Peoples R China;

    Tianjin Univ, Tianjin Key Lab Nonlinear Dynam & Chaos Control, Sch Mech Engn, Tianjin 300072, Peoples R China;

    Tianjin Univ, Tianjin Key Lab Nonlinear Dynam & Chaos Control, Sch Mech Engn, Tianjin 300072, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号