首页> 外文期刊>Mathematical Problems in Engineering >Synchronization of a Class of Memristive Stochastic Bidirectional Associative Memory Neural Networks with Mixed Time-Varying Delays via Sampled-Data Control
【24h】

Synchronization of a Class of Memristive Stochastic Bidirectional Associative Memory Neural Networks with Mixed Time-Varying Delays via Sampled-Data Control

机译:一类具有混合时变时滞的忆阻随机双向联想记忆神经网络的采样数据控制同步

获取原文
获取原文并翻译 | 示例

摘要

The paper addresses the issue of synchronization of memristive bidirectional associative memory neural networks (MBAMNNs) with mixed time-varying delays and stochastic perturbation via a sampled-data controller. First, we propose a new model of MBAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying distributed delays and discrete delays. Second, we design a new method of sampled-data control for the stochastic MBAMNNs. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the methods are carefully designed to confirm the synchronization processes are suitable for the feather of the memristor. Third, sufficient criteria guaranteeing the synchronization of the systems are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.
机译:本文通过采样数据控制器解决了具有混合时变时滞和随机扰动的忆阻双向联想记忆神经网络(MBAMNN)的同步问题。首先,我们提出了一种具有混合时变时延的MBAMNNs新模型。在提出的方法中,混合延迟包括时变分布式延迟和离散延迟。其次,我们为随机MBAMNN设计了一种新的采样数据控制方法。传统的控制方法缺乏反映可变突触权重的能力。在本文中,精心设计了方法以确认同步过程适合忆阻器的特性。第三,基于派生响应概念,得出了保证系统同步的充分标准。最后,通过数值实验验证了所提机制的有效性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第5期|9126183.1-9126183.24|共24页
  • 作者单位

    Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China;

    North China Univ Sci & Technol, Tangshan 063009, Peoples R China;

    Beijing Univ Posts & Telecommun, Informat Secur Ctr, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China;

    Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany;

    Cleveland State Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44115 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号