首页> 外文期刊>Mathematical Problems in Engineering >Model Predictive Control of Duplex Inlet and Outlet Ball Mill System Based on Parameter Adaptive Particle Swarm Optimization
【24h】

Model Predictive Control of Duplex Inlet and Outlet Ball Mill System Based on Parameter Adaptive Particle Swarm Optimization

机译:基于参数自适应粒子群算法的双联进出口球磨机系统模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

The direct-fired system with duplex inlet and outlet ball mill has strong hysteresis and nonlinearity. The original control system is difficult to meet the requirements. Model predictive control (MPC) method is designed for delay problems, but, as the most commonly used rolling optimization method, particle swarm optimization (PSO) has the defects of easy to fall into local minimum and non-adjustable parameters. Firstly, a LS-SVM model of mill output is established and is verified by simulation in this paper. Then, a particle similarity function is proposed, and based on this function a parameter adaptive particle swarm optimization algorithm (HPAPSO) is proposed. In this new method, the weights and acceleration coefficients of PSO are dynamically adjusted. It is verified by two common test functions through Matlab software that its convergence speed is faster and convergence accuracy is higher than standard PSO. Finally, this new optimization algorithm is combined with MPC for solving control problem of mill system. The MPC based on HPAPSO (HPAPSO-MPC) algorithms is compared with MPC based on PAPSO (PAPSO-MPC) and PID control method through simulation experiments. The results show that HPAPSO-MPC method is more accurate and can achieve better regulation performance than PAPSO-MPC and PID method.
机译:带有双头进料和出料球磨机的直接燃烧系统具有很强的磁滞和非线性。原来的控制系统很难满足要求。模型预测控制(MPC)方法是为解决延迟问题而设计的,但是作为最常用的滚动优化方法,粒子群优化(PSO)具有易于陷入局部最小值和不可调整参数的缺陷。首先建立了轧机产量的LS-SVM模型,并通过仿真进行了验证。然后,提出了一种粒子相似度函数,并基于该函数提出了一种参数自适应粒子群优化算法(HPAPSO)。在这种新方法中,动态调整了PSO的权重和加速度系数。通过Matlab软件通过两个通用测试功能的验证,其收敛速度比标准PSO更快,收敛精度更高。最后,将这种新的优化算法与MPC相结合,解决了轧机系统的控制问题。通过仿真实验,比较了基于HPAPSO算法的MPC(HPAPSO-MPC)与基于PAPSO算法的MPC(PAPSO-MPC)和PID控制方法。结果表明,HPAPSO-MPC方法比PAPSO-MPC和PID方法更准确,可实现更好的调节性能。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2019年第6期|6812754.1-6812754.10|共10页
  • 作者单位

    Changsha Univ Sci & Technol Changsha 410114 Hunan Peoples R China|Changsha Univ Sci & Technol Key Lab Renewable Energy Elect Technol Hunan Prov Changsha 410114 Hunan Peoples R China;

    JME HuNan Automat Engn Co Ltd Changsha 410013 Hunan Peoples R China;

    Changsha Univ Sci & Technol Changsha 410114 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号