首页> 外文学位 >Evidence based uncertainty models and particle swarm optimization for multiobjective optimization of engineering systems.
【24h】

Evidence based uncertainty models and particle swarm optimization for multiobjective optimization of engineering systems.

机译:基于证据的不确定性模型和粒子群优化,用于工程系统的多目标优化。

获取原文
获取原文并翻译 | 示例

摘要

The present work develops several methodologies for solving engineering analysis and design problems involving uncertainties and evidences from multiple sources. The influence of uncertainties on the safety/failure of the system and on the warranty costs (to the manufacturer) are also investigated. Both single and multiple objective optimization problems are considered. A methodology is developed to combine the evidences available from single or multiple sources in the presence (or absence) of credibility information of the sources using modified Dempster Shafer Theory (DST) and Fuzzy Theory in the design of uncertain engineering systems. To optimally design a system, multiple objectives, such as to maximize the belief for the overall safety of the system, minimize the deflection, maximize the natural frequency and minimize the weight of an engineering structure under both deterministic and uncertain parameters, and subjected to multiple constraints are considered. We also study the various combination rules like Dempster's rule, Yager's rule, Inagaki's extreme rule, Zhang's center combination rule and Murphy's average combination rule for combining evidences from multiple sources. These rules are compared and a selection procedure was developed to assist the analyst in selecting the most suitable combination rule to combine various evidences obtained from multiple sources based on the nature of evidence sets. A weighted Dempster Shafer theory for interval-valued data (WDSTI) and weighted fuzzy theory for intervals (WFTI) were proposed for combining evidence when different credibilities are associated with the various sources of evidence. For solving optimization problems which cannot be solved using traditional gradient-based methods (such as those involving nonconvex functions and discontinuities), a modified Particle Swarm Optimization (PSO) algorithm is developed to include dynamic maximum velocity function and bounce method to solve both deterministic multi-objective problems and uncertain multi-objective problems (vertex method is used in addition to the modified PSO algorithm for uncertain parameters). A modified game theory approach (MGT) is coupled with the modified PSO algorithm to solve multi-objective optimization problems. In case of problems with multiple evidences, belief is calculated for a safe design (satisfying all constraints) using the vertex method and the modified PSO algorithm is used to solve the multi-objective optimization problems. The multiobjective problem related to the design of a composite laminate simply supported beam with center load is also considered to minimize the weight and maximize buckling load using modified game theory. A comparison of different warranty policies for both repairable and non repairable products and an automobile warranty optimization problem is considered to minimize the total warranty cost of the automobile with a constraint on the total failure probability of the system. To illustrate the methodologies presented in this work, several numerical design examples are solved. We finally present the conclusions along with a brief discussion of the future scope of the research.
机译:本工作开发了几种解决工程分析和设计问题的方法,这些问题涉及来自多个来源的不确定性和证据。还研究了不确定性对系统安全/故障以及对(制造商的)保修成本的影响。同时考虑了单目标优化问题和多目标优化问题。开发了一种方法,用于在不确定工程系统的设计中,使用改进的Dempster Shafer理论(DST)和Fuzzy理论,在存在(或不存在)来源可信度信息的情况下,结合从单个或多个来源获得的证据。为了优化设计系统,在确定性和不确定性参数的双重作用下,要达到多个目标,例如最大化对系统整体安全性的信心,最小化挠度,最大化固有频率并最小化工程结构的重量。考虑约束。我们还研究了各种组合规则,例如Dempster规则,Yager规则,Inagaki的极端规则,Zhang的中心组合规则和Murphy的平均组合规则,用于组合来自多个来源的证据。比较这些规则,并开发出一种选择程序,以帮助分析师根据证据集的性质,选择最合适的组合规则,以组合从多个来源获得的各种证据。提出了针对区间值数据的加权Dempster Shafer理论(WDSTI)和针对区间值的加权模糊理论(WFTI),以在不同可信度与各种证据来源相关联时组合证据。为了解决使用传统的基于梯度的方法无法解决的优化问题(例如涉及非凸函数和不连续性的问题),开发了一种改进的粒子群优化(PSO)算法,其中包括动态最大速度函数和反弹方法,以解决确定性多目标问题和不确定的多目标问题(除了针对不确定参数的改进的PSO算法,还使用了顶点方法)。改进的博弈论方法(MGT)与改进的PSO算法结合使用,以解决多目标优化问题。在有多个证据的问题的情况下,使用顶点方法为安全设计(满足所有约束)计算置信度,并使用改进的PSO算法解决多目标优化问题。使用修改的博弈论,还考虑了与具有中心载荷的复合层压板简单支撑梁的设计有关的多目标问题,以最小化重量并最大化屈曲载荷。对可维修和不可维修产品的不同保修政策以及汽车保修优化问题的比较被认为可以在限制系统总故障概率的情况下将汽车的总保修成本降至最低。为了说明本文中介绍的方法,解决了几个数值设计示例。最后,我们给出了结论,并简要讨论了该研究的未来范围。

著录项

  • 作者

    Annamdas, Kiran Kumar.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Engineering Mechanical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 413 p.
  • 总页数 413
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号