首页> 外文期刊>Mathematical Problems in Engineering >A Mechanism for Recognizing and Suppressing the Emergent Behavior of UAV Swarm
【24h】

A Mechanism for Recognizing and Suppressing the Emergent Behavior of UAV Swarm

机译:一种识别和抑制无人机群紧急行为的机制

获取原文
获取原文并翻译 | 示例

摘要

Similar to social animals in nature, UAV swarm is also a complex system that can produce emergent behavior. The emergent behavior of UAV swarm in specific airspace is undoubtedly the act that the defense side does not expect to see; therefore, recognition and suppression of the emergent behavior of UAVs swarm are needed. Based on the analysis of the UAV swarm emergent behavior mechanism, by adopting f-divergence method, UAV swarm emergent behavior was quantified, and a rapid recognition mechanism of emergent behavior has been established, thus, making preparation for the suppression of the emergent behavior. In the academic circle, for the first time, in accordance with heuristic rules governing the algorithms of UAV swarm suppression, principle of emergent behavior suppression has been proposed, failure judgment model of UAV swarm control under interference conditions has been constructed, the stability of UAV swarm has been analyzed, and the combat command process of UAV swarm based on OODA loop has been put forward. Through the simulation, the comparison of information entropy and f-divergence based emergence measurement method has been made, and f-divergence based method has some advantages for measuring the emergence of UAV swarm. From the analysis and discussion of the inhibitory effect on swarm flocking behavior under different interference intensity and timing, conclusion has been drawn that comprehensive suppression on the premise of correct recognition of flocking behavior is the best strategy fighting against UAV swarm emergent behavior.
机译:与自然界中的社交动物相似,无人机群也是一个复杂的系统,可以产生紧急行为。无人机群在特定领空的突现行为无疑是国防方所不希望看到的行为;因此,需要识别和抑制无人机群的紧急行为。在对无人机群突现行为机理进行分析的基础上,采用f-散度法对无人机群突现行为进行量化,建立了突袭行为快速识别机制,为抑制突袭行为做准备。在学术界,首次根据启发式规则控制无人机群抑制算法,提出了突发行为抑制的原理,构建了无人机群控制在干扰条件下的故障判断模型,稳定了无人机对无人机群进行了分析,提出了基于OODA循环的无人机群作战指挥流程。通过仿真,对信息熵和基于f散度的突现测量方法进行了比较,基于f散度的方法对无人机群的出现具有一定的优势。通过对不同干扰强度和时间对群聚行为的抑制作用的分析和讨论,可以得出结论,在正确认识群聚行为的前提下进行综合抑制是对抗无人机群涌出行为的最佳策略。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2018年第11期|6734923.1-6734923.14|共14页
  • 作者单位

    Acad Mil Med Sci, Acad Syst Engn, Inst Network Informat, Beijing 100071, Peoples R China;

    Naval Command Coll, Nanjing 210000, Jiangsu, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Nanjing 210044, Jiangsu, Peoples R China;

    Army Engn Univ PLA, Nanjing 210007, Jiangsu, Peoples R China;

    Natl Def Univ PLA, Beijing 100091, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号