首页> 外文期刊>Computers & operations research >Enhancing biologically inspired swarm behavior: Metaheuristics to foster the optimization of UAVs coordination in target search
【24h】

Enhancing biologically inspired swarm behavior: Metaheuristics to foster the optimization of UAVs coordination in target search

机译:增强受生物启发的群体行为:元启发法在目标搜索中促进无人机协调的优化

获取原文
获取原文并翻译 | 示例

摘要

Recent miniaturization in Unmanned Aerial Vehicles (UAVs) technology encourages the use of many small UAVs for search missions in unknown environments, provided that the autonomous and adaptive coordination logic can be effective. In this research field, biologically inspired metaheuristics have been proposed to mimics swarms, flocks, and other coordination schemas. The design and management of such systems is a research challenge when considering (i) combination and optimization of multiple metaheuristics and (ii) enhancements of biologically inspired metaheuristic through technological advances. In this paper the swarm coordination of UAVs employed in target search is based on flocking and stigmergy, to provide robust formation control and dynamic environmental information sharing, respectively. The design of both metaheuristics takes into account UAVs equipment, and the coordination logic is adapted to the mission by means of a differential evolutionary algorithm. This algorithm optimizes the aggregated structural parameters of all metaheuristics to allow the most efficient coordination with respect to the mission environment. Some possible enhancements of stigmergy are studied by simulating target search tasks on synthetic and real-world scenarios. (C) 2019 Elsevier Ltd. All rights reserved.
机译:最近的无人飞行器(UAV)技术的小型化鼓励在未知环境中使用许多小型UAV进行搜索任务,条件是自动和自适应协调逻辑可以有效。在这个研究领域中,已经提出了生物学启发的元启发法来模仿群,羊群和其他协调模式。当考虑(i)多种元启发式方法的组合和优化,以及(ii)通过技术进步增强生物学启发的元启发式方法时,此类系统的设计和管理是一项研究挑战。在本文中,用于目标搜索的无人机群的协调是基于植绒和抑制,分别提供鲁棒的编队控制和动态环境信息共享。两种元启发法的设计都考虑到了无人机设备,并且协调逻辑通过差分进化算法适应了任务。该算法优化了所有元启发法的聚合结构参数,以实现与任务环境有关的最有效协调。通过在合成和现实情况下模拟目标搜索任务,研究了对视力的一些可能增强。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号