首页> 外文期刊>Mathematical notes >Attractors of dissipative hyperbolic equations with singularly oscillating external forces
【24h】

Attractors of dissipative hyperbolic equations with singularly oscillating external forces

机译:具有奇异振荡外力的耗散双曲型方程的吸引子

获取原文
获取原文并翻译 | 示例

摘要

We study a uniform attractor A for a dissipative wave equation in a bounded domain Ω □□n under the assumption that the external force singularly oscillates in time; more precisely, it is of the form g 0(x, t)+ ε?α g 1 (x, t/ε), x ∈ Ω, t ∈ □, where α > 0, 0 < ε ≤ 1. In E = H 0 1 × L 2, this equation has an absorbing set B ε estimated as ‖B ε‖ E ≤C 1+C 2ε?α and, therefore, can increase without bound in the norm of E as ε → 0+. Under certain additional constraints on the function g 1(x, z), x ∈ Ω, z ∈ □, we prove that, for 0 < α ≤ α 0, the global attractors of such an equation are bounded in E, i.e.,A~ε||E≤C_3 , 0 < ε ≤ 1. Along with the original equation, we consider a “limiting” wave equation with external force g 0(x, t) that also has a global attractor . For the case in which g 0(x, t) = g 0(x) and the global attractor of the limiting equation is exponential, it is established that, for 0 < α ≤ α 0, the Hausdorff distance satisfies the estimate dist _E(A~ε,A~o)≤Cεn(a), where η(α) > 0. For η(α) and α 0, explicit formulas are given. We also study the nonautonomous case in which g 0 = g 0(x, t). It is assumed that sufficient conditions are satisfied for which the “limiting” nonautonomous equation has an exponential global attractor. In this case, we obtain upper bounds for the Hausdorff distance of the attractors A_ε from A~o , similar to those given above.
机译:我们假设外力随时间发生奇异振荡,在有界Ω□□n中研究耗散波动方程的均匀吸引子A。更准确地说,它的形式为g 0(x,t)+ε?αg 1(x,t /ε),x∈Ω,t∈□,其中α> 0,0 <ε≤1。 = H 0 1×L 2,该方程具有一个吸收集Bε,估计为“ Bε” E≤C1 + C2ε?α,因此可以随E→0+的增加而不受E范数的限制。在函数g 1(x,z),x∈Ω,z∈□的某些附加约束下,我们证明,对于0 <α≤α0,该等式的整体吸引子在E中有界,即A 〜ε||E≤C_3,0 <ε≤1。与原始方程式一样,我们考虑具有外力g 0(x,t)的“极限”波动方程式,该方程式也具有全局吸引子。对于g 0(x,t)= g 0(x)且极限方程的整体吸引子是指数的情况,可以确定,对于0 <α≤α0,Hausdorff距离满足估计dist _E (A〜ε,A〜o)≤Cεn(a),其中η(α)>0。对于η(α)和α0,给出明确的公式。我们还研究了g 0 = g 0(x,t)的非自治情况。假设满足了“极限”非自治方程具有指数全局吸引子的充分条件。在这种情况下,我们从A〜o获得吸引子A_ε的Hausdorff距离的上限,类似于上面给出的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号