首页> 外文期刊>Mathematical notes >Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems
【24h】

Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems

机译:无限维量子系统中的施密特数和部分纠缠裂隙通道

获取原文
获取原文并翻译 | 示例

摘要

The Schmidt number of a state of an infinite-dimensional composite quantum system is defined and several properties of the corresponding Schmidt classes are considered. It is shown that there are states with given Schmidt number such that any of their countable convex decompositions does not contain pure states of finite Schmidt rank. The classes of infinite-dimensional partially entanglement-breaking channels are considered, and generalizations of several properties of such channels, which were obtained earlier in the finite-dimensional case, are proved. At the same time, it is shown that there are partially entanglement-breaking channels (in particular, entanglement-breaking channels) such that all the operators in any of their Kraus representations are of infinite rank.
机译:定义了无限维复合量子系统的状态的Schmidt数,并考虑了相应Schmidt类的若干性质。结果表明,存在具有给定施密特数的状态,因此它们的可数凸分解中的任何一个都不包含有限施密特秩的纯状态。考虑了无限维部分纠缠破坏通道的类别,并证明了这种通道在有限维情况下较早获得的几种性质的推广。同时,示出了存在部分纠缠通道(特别是纠缠通道),使得在其任何克劳斯表示中的所有算子都是无限级的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号