首页> 外文期刊>Mathematical notes >Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces
【24h】

Generalization of the Lagrange Method to the Case of Second-Order Linear Differential Equations with Constant Operator Coefficients in Locally Convex Spaces

机译:Lagrange方法泛化到局部凸空间中具有恒定算子系数的二阶线性微分方程的情况

获取原文
获取原文并翻译 | 示例

摘要

Abstract The well-known Lagrange method for linear inhomogeneous differential equations is generalized to the case of second-order equations with constant operator coefficients in locally convex spaces. The solutions are expressed in terms of uniformly convergent functional vector-valued series generated by a pair of elements of a locally convex space. Sufficient conditions for the continuous dependence of solutions on the generating pair are obtained. The solution of the Cauchy problem for the equations under consideration is also obtained and conditions for its existence and uniqueness are given. In addition, under certain conditions, the so-called general solution of the equations (a function of most general form from which any particular solution can be derived) is obtained. The study is carried out using the characteristics (order and type) of an operator and of a sequence of operators. Also, the convergence of operator series with respect to equicontinuous bornology is used.
机译:摘要线性非齐次微分方程的著名拉格朗日方法被推广到局部凸空间中具有恒定算子系数的二阶方程的情况。这些解用由局部凸空间的一对元素生成的均匀收敛的函数矢量值级数表示。获得了溶液连续依赖于生成对的充分条件。还获得了所考虑方程的柯西问题的解,并给出了其存在和唯一性的条件。另外,在某些条件下,可以获得方程的所谓一般解(可以从中导出任何特定解的最一般形式的函数)。使用操作员和操作员序列的特征(顺序和类型)进行研究。而且,使用了关于等连续新生儿学的算子级数的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号