首页> 外文期刊>Mathematical Methods of Operations Research >Optimal partial hedging of an American option: shifting the focus to the expiration date
【24h】

Optimal partial hedging of an American option: shifting the focus to the expiration date

机译:美式期权的最佳部分套期保值:将重点转移到到期日

获取原文
获取原文并翻译 | 示例

摘要

As a main contribution we present a new approach for studying the problem of optimal partial hedging of an American contingent claim in a finite and complete discrete-time market. We assume that at an early exercise time the investor can borrow the amount she has to pay for the option holder by entering a short position in the numéraire asset and that this loan in turn will mature at the expiration date. We model and solve a partial hedging problem, where the investor’s purpose is to find a minimal amount at which she can hedge the above-mentioned loan with a given probability, while the potential shortfall is bounded above by a certain number of numéraire assets. A knapsack problem approach and greedy algorithm are used in solving the problem. To get a wider view of the subject and to make interesting comparisons, we treat also a closely related European case as well as an American case where a barrier condition is applied.
机译:作为主要贡献,我们提出了一种新方法,用于研究在有限和完整的离散时间市场中美国或有债权的最优部分套期问题。我们假设投资者可以在早期行使时通过在numéraire资产中输入空头头寸来借入其为期权持有人支付的金额,并且该笔贷款将在到期日到期。我们为部分对冲问题建模并解决了该问题,即投资者的目的是找到可以以给定的概率对上述贷款进行对冲的最低金额,而潜在的短缺额则由一定数量的数字资产限制。背包问题方法和贪婪算法用于解决该问题。为了更广泛地了解该主题并进行有趣的比较,我们还处理了一个密切相关的欧洲案例以及一个应用了障碍条件的美国案例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号