首页> 外文期刊>Mathematical and Computer Modelling of Dynamical Systems >Structure preserving model order reduction of large sparse second-order index-1 systems and application to a mechatronics model
【24h】

Structure preserving model order reduction of large sparse second-order index-1 systems and application to a mechatronics model

机译:大型稀疏二阶index-1系统的结构保持模型阶约化及其在机电模型中的应用

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, mechanical engineers heavily depend on mathematical models for simulation, optimization and controller design. In either of these tasks, reduced dimensional formulations are obligatory in order to achieve fast and accurate results. Usually, the structural mechanical systems of machine tools are described by systems of second-order differential equations. However, they become descriptor systems when extra constraints are imposed on the systems. This article discusses efficient techniques of Gramian-based model-order reduction for second-order index-1 descriptor systems. Unlike, our previous work, here we mainly focus on a second-order to second-order reduction technique for such systems, where the stability of the system is guaranteed to be preserved in contrast to the previous approaches. We show that a special choice of the first-order reformulation of the system allows us to solve only one Lyapuov equation instead of two. We also discuss improvements of the technique to solve the Lyapunov equation using low-rank alternating direction implicit methods, which further reduces the computational cost as well as memory requirement. The proposed technique is applied to a structural finite element method model of a micro-mechanical piezo-actuators-based adaptive spindle support. Numerical results illustrate the increased efficiency of the adapted method.
机译:如今,机械工程师在很大程度上依靠数学模型进行仿真,优化和控制器设计。在这两项任务中,必须采用减小尺寸的公式,以便获得快速而准确的结果。通常,机床的结构机械系统由二阶微分方程组来描述。但是,当对系统施加额外约束时,它们将成为描述符系统。本文讨论了针对二阶索引1描述符系统的基于Gramian的模型阶约简的有效技术。与我们以前的工作不同,这里我们主要关注于针对此类系统的二阶到二阶约简技术,与先前的方法相比,该技术可确保保持系统的稳定性。我们表明,系统一阶重构的特殊选择使我们只能求解一个Lyapuov方程,而不是两个方程。我们还将讨论使用低秩交替方向隐式方法求解Lyapunov方程的技术的改进,这将进一步降低计算成本以及内存需求。将该技术应用于基于微机械压电致动器的自适应主轴支撑的结构有限元方法模型。数值结果说明了改进方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号