首页> 外文期刊>Materials and structures >Effect of pore structure and moisture content on gas diffusion and permeability in porous building stones
【24h】

Effect of pore structure and moisture content on gas diffusion and permeability in porous building stones

机译:孔隙结构和水分含量对多孔建筑石材中气体扩散和渗透性的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Hazardous gases in buildings are a concern for public health and security. These gases can be released from the building materials to indoor air and their concentration may become critical where ventilation is hindered, as such in hypogean or more energetically efficient airtight constructions. Furthermore, the gas ventilation and the indoor gas concentration can considerably increase by the vapour condensation on the ceiling and walls of buildings. In this paper, we characterise the CO2 gas diffusion for a representative range of building porous stones with the aim of establishing the effect of the water content in the gaseous diffusion coefficient. We propose a new methodology to measure gas diffusion with a laboratory device that works under different hygrometric conditions. Results reveal water pore condensation reduces both connected porosity and pore size and therefore, the CO2 diffusion coefficient. This variation occurs in all the studied porous building stones although it is especially important in stones with small pores. Thus, the reduction of CO2 diffusion coefficient for the stone with thinnest pores is by 50% when relative humidity varies from 20 to 90%. Permeability and gas diffusion coefficients present similar trends. Porous stones with larger pores and higher porosity values present the highest CO2 diffusion, water and gas permeability coefficients. Pore size is the conclusive parameter within the transport coefficients. It greatly affects both the tortuosity factor of the CO2 gaseous diffusion and the slip parameter of the Klinkenberg's model for gas permeability coefficient. Finally, for studied samples, we establish a power regression, which correlates thoroughly both coefficients.
机译:建筑物中的有害气体是公共卫生与安全的关注点。这些气体可以从建筑材料释放到室内空气中,并且在通风不良的情况下(例如在hypogean或更节能的密封结构中),它们的浓度可能变得至关重要。此外,由于建筑物的天花板和墙壁上的蒸气凝结,气体通风和室内气体浓度会大大增加。在本文中,我们表征了建筑多孔石的代表性范围内的CO2气体扩散,目的是确定含水量对气体扩散系数的影响。我们提出了一种使用在不同湿度条件下工作的实验室设备测量气体扩散的新方法。结果表明,水孔凝结降低了连通孔隙率和孔径,因此降低了CO2扩散系数。这种变化发生在所有研究的多孔建筑石材中,尽管在具有小孔的石材中尤为重要。因此,当相对湿度在20%到90%之间变化时,孔隙最薄的石材的CO2扩散系数降低了50%。渗透率和气体扩散系数呈现相似的趋势。孔隙较大,孔隙率较高的多孔石材具有最高的CO2扩散,水和气体渗透系数。孔径是传输系数中的决定性参数。它极大地影响了CO2气体扩散的曲折因子和Klinkenberg气体渗透系数模型的滑动参数。最后,对于研究的样本,我们建立了幂回归,将两个系数完全相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号