首页> 外文期刊>Machine Learning >SAGA: sparse and geometry-aware non-negative matrix factorization through non-linear local embedding
【24h】

SAGA: sparse and geometry-aware non-negative matrix factorization through non-linear local embedding

机译:SAGA:通过非线性局部嵌入进行稀疏和几何感知的非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new non-negative matrix factorization technique which (1) allows the decomposition of the original data on multiple latent factors accounting for the geometrical structure of the manifold embedding the data; (2) provides an optimal representation with a controllable level of sparsity; (3) has an overall linear complexity allowing handling in tractable time large and high dimensional datasets. It operates by coding the data with respect to local neighbors with non-linear weights. This locality is obtained as a consequence of the simultaneous sparsity and convexity constraints. Our method is demonstrated over several experiments, including a feature extraction and classification task, where it achieves better performances than the state-of-the-art factorization methods, with a shorter computational time.
机译:本文提出了一种新的非负矩阵分解技术,该技术(1)允许将原始数据分解为多个潜在因子,从而考虑了嵌入数据的流形的几何结构; (2)提供可控制的稀疏度的最佳表示; (3)具有整体线性复杂度,允许在可处理的时间处理大型和高维数据集。它通过对具有非线性权重的本地邻居的数据进行编码来进行操作。由于同时存在稀疏性和凸性约束,因此获得了该局部性。我们的方法在多个实验中得到了证明,包括特征提取和分类任务,该方法与最新的因式分解方法相比,具有更佳的性能,并且计算时间更短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号