首页> 外文期刊>Machine Learning >Distributional learning of parallel multiple context-free grammars
【24h】

Distributional learning of parallel multiple context-free grammars

机译:并行的多个无上下文语法的分布式学习

获取原文
获取原文并翻译 | 示例

摘要

Natural languages require grammars beyond context-free for their description. Here we extend a family of distributional learning algorithms for context-free grammars to the class of Parallel Multiple Context-Free Grammars (PMCFGs). These grammars have two additional operations beyond the simple context-free operation of concatenation: the ability to interleave strings of symbols, and the ability to copy or duplicate strings. This allows the grammars to generate some non-semilinear languages, which are outside the class of mildly context-sensitive grammars. These grammars, if augmented with a suitable feature mechanism, are capable of representing all of the syntactic phenomena that have been claimed to exist in natural language. We present a learning algorithm for a large subclass of these grammars, that includes all regular languages but not all context-free languages. This algorithm relies on a generalisation of the notion of distribution as a function from tuples of strings to entire sentences; we define nonterminals using finite sets of these functions. Our learning algorithm uses a nonprobabilistic learning paradigm which allows for membership queries as well as positive samples; it runs in polynomial time.
机译:自然语言需要无上下文限制的语法来进行描述。在这里,我们将针对上下文无关文法的分布式学习算法家族扩展到并行多上下文无关文法(PMCFG)类。除了简单的无关联上下文连接操作外,这些语法还有两个附加操作:插入符号字符串的能力以及复制或复制字符串的能力。这允许语法生成某些非半线性语言,这些语言不在上下文敏感语法的范畴之内。这些语法,如果使用适当的特征机制进行了扩充,则能够代表声称以自然语言存在的所有句法现象。我们为这些语法的大子类提供了一种学习算法,其中包括所有常规语言,但不包括所有无上下文无关的语言。该算法依赖于从字符串元组到整个句子的分布概念的泛化。我们使用这些函数的有限集来定义非终结符。我们的学习算法使用非概率学习范例,该范例允许进行成员资格查询以及正样本;它以多项式时间运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号